摘要背景:复发性扩散性去极化 (SD) 发生在卒中和创伤性脑损伤中,被认为是损伤进展的标志。活体大脑中与 SD 相关的条件很复杂,这促使研究人员研究活体大脑切片制剂中的 SD,但实验室之间的方法差异使综合数据解释变得复杂。在这里,我们对活体大脑切片中 SD 的演变进行了比较评估,这些切片响应选定的 SD 触发器并在各种培养基中,在其他标准化实验条件下进行。方法:制备大鼠活体冠状脑切片 (350 μm) (n = 51)。使用低渗培养基 (Na + 含量从 130 降至 60 mM,HM) 或氧-葡萄糖剥夺 (OGD) 来引起渗透性或缺血性挑战。用人工脑脊液 (aCSF) 灌注的脑切片作为对照。在对照条件下通过压力注射 KCl 或电刺激诱发 SD。通过皮层内玻璃毛细管电极记录局部场电位 (LFP),或在白光照射下进行内在光信号成像以表征 SD。使用 TTC 和苏木精-伊红染色评估组织损伤。结果:严重渗透应激或 OGD 会引发自发性 SD。与 aCSF 中触发的 SD 相反,这些自发去极化的特点是复极不完全且持续时间延长。此外,HM 或 OGD 下的皮质 SD 会传播到整个皮质,偶尔会侵入纹状体,而 aCSF 中的 SD 在停止之前覆盖的皮质区域要小得多,并且从未扩散到纹状体。HM 中的 SD 显示出最大的幅度和最快的传播速度。最后,HM 中的自发性 SD 以及尤其是在 OGD 下的自发性 SD 之后会出现组织损伤。结论:虽然 Na + /K + ATP 酶的失效被认为会损害 OGD 相关 SD 的组织恢复,但组织肿胀相关的过度兴奋和星形胶质细胞缓冲能力的耗尽被认为会促进渗透应激下的 SD 进化。与 OGD 相比,在低渗透条件下传播的 SD 不是终点,但它与不可逆的组织损伤有关。需要进一步研究以了解 HM 中自发发生的 SD 进化与 OGD 下的 SD 进化之间的机制相似性或差异性。关键词:脑切片、脑缺血、扩散性去极化、渗透应激、氧葡萄糖剥夺
AI artificial intelligence ROI region of interest eNM extracellular neuromelanin SND substantia nigra pars compacta, dorsal tier H&E Hematoxylin and Eosin SNL substantia nigra pars compacta, lateral part iNM intracellular neuromelanin SNpc substantia nigra pars compacta PD Parkinson's disease SNV substantia nigra pars compacta,腹侧
微生 - 果皮体(WPB)是内皮细胞中独家发现的分泌细胞器,在其他货物蛋白中都包含止血性von-willebrand因子(VWF)。刺激内皮细胞会导致WPB的胞外增生并将其货物释放到血管腔中,在该管腔中,VWF将其插入长达1000 µm的长串中,并将血小板募集到血管损伤部位,从而在血压反应中介导至关重要的步骤。VWF的功能与其结构密切相关;为了在血管管腔中完成其任务,VWF必须在翻译成ER后进行复杂的包装/处理。er,高尔基体和WPB本身为VWF的成熟提供了独特的环境,在高尔基体的水平上,它由低pH值和升高的Ca 2+浓度组成。wpb也以低腔内pH为特征,但到目前为止尚未解决它们的Ca 2+含量。在这里,我们采用了一种化学方法来规避酸性环境中Ca 2+成像的问题,并表明WPB确实也具有升高的Ca 2+浓度。我们还表明,高尔基体居民Ca 2+泵ATP2C1的耗竭导致WPB中的Luminal Ca 2+的较小降低,这表明Ca 2+
整个幻灯片扫描技术已使完整的组织部分产生了高分辨率图像。但是,常用的分析软件通常无法处理产生的大数据文件。在这里,我们提出了一种使用开源软件Qupath的方法来检测,对荧光标记的细胞(小胶质细胞和周细胞)在整个冠状脑组织切片中进行分类。分析了男性和雌性NG2DDSRED X CX 3 CR1 1 /GFP小鼠的全脑切片。在一系列检测参数中选择了感兴趣的小区域,并将手动计数与自动方法产生的计数进行比较。确定了检测细胞并将其分类为每个大脑区域中的小胶质细胞或周细胞的最佳参数,并应用于与整个体感和运动皮层相对应的注释,每个部分的海马,thalamus和下丘脑。3.74%的所有检测到的细胞被覆盖为周细胞;但是,丘脑(6.20%)的这一比例显着高于其他地区。相比之下,皮质中的小胶质细胞(占总细胞的4.51%)更丰富(5.54%)。男性和雌性小鼠之间没有差异。总而言之,Qupath为全扫描图像分析提供了一种用户友好的解决方案,这可能会导致健康和疾病的重要新发现。
标题:下丘脑脑切片中的多峰阵列记录跑步头:穿孔多电极阵列记录作者:Mino D. C. Belle 1,2,BeatrizBaño-Otalora 1和Hugh D.Piggins 1
图2:3D PDAC片段模型的开发。a。微流体芯片Identx3,AimBiotech TM的示意图。B.碎屑上胶原蛋白中癌细胞播种的示意图,随后的球体形成。C. PDAC肿瘤球体从单细胞(D0)与芯片上胶原蛋白成熟7天后发育的明亮场显微镜图像(D0)(D7)。比例尺= 100µm。d-f。 Live/Dead Assay的共聚焦显微镜图像(死=红色; Live = Green),带有(d)3D堆栈的Z-Procotity,在第8天芯片,(E-F)3D共聚焦堆栈重建。比例尺= 100µm。g-i。第二次谐波生成(SHG)显微镜图像肿瘤球体(绿色),周围的胶原基质(红色)3D堆栈(G)的Z-Proctions(g),重建了3D图像(H-I)。比例尺= 50µm。
基于石墨炔 (GY) 和石墨炔 (GDY) 的单层代表了下一代二维富碳材料,其可调结构和性能超越石墨烯。然而,检测原子级厚度的 GY/GDY 类似物中的能带形成一直具有挑战性,因为该系统必须同时满足长程有序和原子精度。本研究报告了在表面合成的金属化 Ag-GDY 薄片中形成具有介观(≈ 1 μ m)规律性的能带的直接证据。采用扫描隧道和角度分辨光电子光谱,分别观察到费米能级以上实空间电子态的能量相关跃迁和价带的形成。此外,密度泛函理论 (DFT) 计算证实了这些观察结果,并揭示了蜂窝晶格上双重简并的前沿分子轨道产生接近费米能级的平坦、狄拉克和 Kagome 能带。 DFT 建模还表明原始薄片材料具有固有带隙,该带隙保留在具有 h-BN 的双层中,而吸附诱导的带隙内电子态在 Ag-GDY 装饰银的 (111) 面的合成平台上演变。这些结果说明了通过原子精确的二维碳材料中的分子轨道和晶格对称性设计新型能带结构的巨大潜力。
这些幻灯片中包含的信息,本演示文稿由BG Gold Capital II Corp.及其子公司(“公司”)仅用于您的信息。它可能不会全部或部分重新分布或部分重新分配给任何其他人。虽然已经采取了所有合理的护理来确保这些幻灯片中所述的事实,并且该介绍是准确的,并且这些幻灯片中包含的预测,观点和期望和期望是公平而合理的,但本文档中包含的信息尚未被独立验证。没有明示或暗示的代表或保证,就本演示文稿中包含的信息或意见的准确性,公平性或完整性,并且不应依赖任何此类信息。
顺式调节元件(CRE)与反式调节剂相互作用以编排基因表达,但是在多基因基因座中如何协调转录调控尚未实验定义。我们试图表征控制相邻共刺激基因CD28,CTLA4和ICO的动态表达的CRE,并编码了T细胞介导的免疫的调节剂。平铺CRISPR干扰(CRISPRI)筛选在常规和调节子集的原代人T细胞中,发现的基因,细胞子集和刺激特异性CRE。与CRISPR敲除筛选和针对转座酶可访问的染色质的测定(ATAC-SEQ)分析确定了在特定的CRISPRI-RESPONSIME元素上影响染色质状态的反式调节剂,以控制共刺激基因表达。然后,我们发现了一个关键的CCCTC结合因子(CTCF)边界,该边界增强了与CTLA4的相互作用,同时还可以防止CD28的混杂激活。通过系统地绘制CRE和相关的反式调节剂直接在原代人T细胞子集中,这项工作克服了长期存在的实验局限性,以解码与免疫稳态至关重要的复杂的多基因基因座中的上下文相关基因调节程序。
