例如: 答案 1 答案 2 答案 3 c) 写出答案卡上出现的句子。 05 – 考生必须小心保管答题卡,以免其折叠、折痕、刮伤或弄脏。仅可更换在交货时已损坏的应答卡。 06 – 在获得开始考试的授权后,考生必须立即检查本试题手册是否有序且包含所有页面。客观问题通过其陈述上方的数字来识别。如果不是这种情况,必须立即向房间检查员报告事实。 07 – 每个客观问题提供 5(五)个替代方案,用字母(A)、(B)、(C)、(D)和(E)分类;只有一个能充分回答所提出的问题。这样,考生必须在答题卡上只标记一个字母,并用透明材料制成的黑色墨水圆珠笔连续、密集地填写圆圈内的所有空间。例如:ABDE 08 – 考生必须完整填写标记字段,不得留任何空白,因为答题卡的光学读取器对深色标记很敏感。 09 — 标记多个选项会导致问题无效,即使其中一个答案是正确的。 10 – 候选人:
c Oseer机会靠近主要生物化学计划的研究和跨学科性,以及对广泛方法论技能的教学,使我们的毕业生能够充当不同学科之间的联系。因此,广泛的专业界面对他们开放。这些包括学术或非大学研究和教学机构,化学,制药或其他行业分支机构的研究,生产,管理或市场营销以及政府调查和监督当局。其他机会包括环境保护,出版,专利,自营职业,或者,由于课程还教学生如何在IT领域使用计算机辅助方法。
在植物适应区域中,复合叶子证明了自然的创造力。与简单的叶子不同,该叶子由单个未分离的叶片组成,复合叶子分为一个连接到公共rachis上的多个传单。这种独特的结构提供了一系列的生理和生态优势,提高了光合作用的效率并确保在各种环境中生存。在植物生物化学和生理学杂志的范围内,复合叶体现了一种精致的进化解决方案,用于优化光合作用和植物强度。
1)Suzuki,T。(2021)tRNA修改的扩展世界及其疾病相关性。nat。修订版mol。细胞生物。 ,22,375 - 392。 2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。 febs J.,288,7096 - 7122。 3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y. (2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。 核酸res。 ,46,1565 - 1583。 4) (2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。 J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。细胞生物。,22,375 - 392。2)Chujo,T。&Tomizawa,K。(2021)人类转移RNA模量:由转移RNA修改中的畸变引起的疾病。febs J.,288,7096 - 7122。3)Asano,K.,Suzuki,T.,Saito,A.,Wei,F.-Y.,Ikeuchi,Y.,Numata,T.,Tanaka,R.,tanaka,R.,Yamane,Y.(2018)与牛磺酸降低和人类疾病相关的tRNA修饰的代谢和化学调节。核酸res。,46,1565 - 1583。4)(2011)CDKAL1对TRNA(LYS)修饰的词置换会导致小鼠2型糖尿病的发展。J. Clin。 投资。 ,121,3598 - 3608。 5) (2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。 SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。J. Clin。投资。,121,3598 - 3608。5)(2021)FTSJ1的损失渗透了大脑中特定的翻译效率,并且与X连锁的智力障碍有关。SCI。 adv。 ,7,EABF3072。 6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y. (2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。 nucl。 酸res。SCI。adv。,7,EABF3072。6)Tresky,R.,Miyamoto,Y.,Nagayoshi,Y.,Yabuki,Y.,Araki,K.,Takahashi,Y.,Komohara,Y.(2024)TRMT10A功能障碍Perturbs密码子蛋氨酸和谷氨酰胺的平移,并损害小鼠的脑功能。nucl。酸res。,52,9230 - 9246。7)Blanco,S.,Dietmann,S.,Flores,J.-V.,Hussain,S.,Kutter,C.,Humphreys,P.,Lukk,M.,Lombard,P.,Treps,L.,Popis,M。等。(2014)TRNA的异常甲基化将细胞应激与神经发育疾病联系起来。Embo J.,33,2020 - 2039。
1) Watson, J.-D. & Crick, F.-H. (1953) 核酸的分子结构;脱氧核糖核酸的结构。Nature,171,737 ‒ 738。 2) Zhao, J.、Bacolla, A.、Wang, G.、& Vasquez, KM (2010) 非B型DNA结构引起的遗传不稳定性与进化。Cell. Mol. Life Sci.,67,43 ‒ 62。 3) Asamitsu, S.、Takeuchi, M.、Ikenoshita, S.、Imai, Y.、Kashi- wagi, H.、& Shioda, N. (2019) G-四链体结构在神经生物学和神经药理学中的应用前景。Int. J. Mol. Sci. , 20 , 2884. 4) Kumar, N., Sahoo, B., Varun, K.-A., Maiti, S., & Maiti, S. (2008) 环长度变化对四链体-沃森-克里克双链体竞争的影响。核酸研究。, 36 , 4433 ‒ 4442。5) Bhattacharyya, D., Mirihana Arachchilage, G., & Basu, S. (2016) G-四链体折叠和稳定性中的金属阳离子。前沿化学。, 4 , 38。6) Keniry, M.-A. (2001) 核酸中的四链体结构。生物聚合物,56,123-146。7) Yaku, H., Fujimoto, T., Murashima, T., Miyoshi, D., & Sugi-moto, N. (2012) 酞菁:一类具有许多潜在应用的新型 G-四链体配体。Chem. Commun. (Camb.),48,6203-6216。8) Patel, D.-J., Phan, A.-T., & Kuryavyi, V. (2007) 人类端粒、致癌启动子和 5′-UTR G-四链体:用于癌症治疗的多种高阶 DNA 和 RNA 靶点。Nucleic Acids Res. , 35 , 7429 œ 7455. 9) Joachimi, A., Benz, A., & Hartig, J.-S. (2009) DNA 与 RNA 四链体结构与稳定性的比较. Bioorg. Med. Chem. , 17 , 6811 œ 6815. 10) Zhang, A.-Y., Bugaut, A., & Balasubramanian, S. (2011) 分子内 RNA G-四链体稳定性与拓扑结构的环长依赖性序列独立分析. Biochemistry , 50 , 7251 œ 7258. 11) Phan, A.-T., Kuryavyi, V., Luu, K.-N., & Patel, D.-J. (2007)
Tollike受体:对先天免疫的最新见解和观点。免疫,57,649 - 673。4)Rehwinkel,J。&Gack,M.U。(2020)RIG-I样受体:它们在RNA传感中的调节和作用。nat。修订版免疫。,20,537 - 551。5)Venkataraman,T.,Valdes,M.,Elsby,R.,Kakuta,S.,Cace- Res,G.,Saijo,S.,Iwakura,Y。,&Barber,G.N。(2007)DEXD/H盒RNA解旋酶LGP2的损失表现出不同的抗病毒反应。J. Immunol。 ,178,6444 - 6455。 6)Satoh,T.,Kato,H.,Kumagai,Y.,Yoneyama,M.,Sato,S.,Matsushita,K.,Tsujimura,T.,Fujita,T. (2010)LGP2是RIG-II和MDA5介导的抗病毒反应的积极调节剂。 proc。 natl。 学院。 SCI。 美国,107,1512 - 1517。 7)Bruns,A.M. (2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。 mol。 单元格,55,771 - 781。 8)乌鸦,Y.J. &Stetson,D.B。 (2022)I型干扰素:10年了。 nat。 修订版 免疫。 ,22,471 - 483。 9)村上,S。 (2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。 单元格,82,2236 - 2251。 10)Ablasser,A。 &Chen,Z.J。 (2019)CGA在行动中:在免疫和炎症中扩大角色。 Science,363,EAAT8657。J. Immunol。,178,6444 - 6455。6)Satoh,T.,Kato,H.,Kumagai,Y.,Yoneyama,M.,Sato,S.,Matsushita,K.,Tsujimura,T.,Fujita,T.(2010)LGP2是RIG-II和MDA5介导的抗病毒反应的积极调节剂。proc。natl。学院。SCI。 美国,107,1512 - 1517。 7)Bruns,A.M. (2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。 mol。 单元格,55,771 - 781。 8)乌鸦,Y.J. &Stetson,D.B。 (2022)I型干扰素:10年了。 nat。 修订版 免疫。 ,22,471 - 483。 9)村上,S。 (2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。 单元格,82,2236 - 2251。 10)Ablasser,A。 &Chen,Z.J。 (2019)CGA在行动中:在免疫和炎症中扩大角色。 Science,363,EAAT8657。SCI。美国,107,1512 - 1517。7)Bruns,A.M.(2014)先天免疫传感器LGP2通过调节MDA5 - RNA相互作用和弹性组件来激活抗病毒信号传导。mol。单元格,55,771 - 781。8)乌鸦,Y.J.&Stetson,D.B。(2022)I型干扰素:10年了。nat。修订版免疫。,22,471 - 483。9)村上,S。(2022)mRNA中的隐藏代码:m(6)a对基因表达的控制。摩尔。单元格,82,2236 - 2251。10)Ablasser,A。&Chen,Z.J。(2019)CGA在行动中:在免疫和炎症中扩大角色。Science,363,EAAT8657。11)Ablasser,A。&Hur,S。(2020)调节CGAS和RLR介导的对核酸的免疫力。nat。免疫。,21,17 - 29。12)Hopfner,K.P。&Hornung,V。(2020)CGAS刺信信号传导的分子机制和细胞功能。nat。修订版mol。细胞生物。 ,21,501 - 521。 13)伦纳德(J.N.),吉兰多(R. (2008)TLR3通过合作受体二聚体信号形式。 proc。 natl。 学院。 SCI。 美国,105,258 - 263。 14) (2008)带有双链RNA的Toll样重复3信号传导的结构基础。 Science,320,379 - 381。 15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。 (2005)Toll样受体3配体结合结构域的分子结构。 proc。 natl。 学院。 SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。细胞生物。,21,501 - 521。13)伦纳德(J.N.),吉兰多(R.(2008)TLR3通过合作受体二聚体信号形式。proc。natl。学院。SCI。 美国,105,258 - 263。 14) (2008)带有双链RNA的Toll样重复3信号传导的结构基础。 Science,320,379 - 381。 15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。 (2005)Toll样受体3配体结合结构域的分子结构。 proc。 natl。 学院。 SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。SCI。美国,105,258 - 263。14)(2008)带有双链RNA的Toll样重复3信号传导的结构基础。Science,320,379 - 381。15)Bell,J.K.,Botos,I.,Hall,P.R。,Askins,J.,Shiloach,J.,Segal,D.M。和Davies,D.R。(2005)Toll样受体3配体结合结构域的分子结构。proc。natl。学院。SCI。 美国,102,10976 - 10980。 16)Choe,J.,Kelker,M.S。和Wilson,I.A。 (2005)人Toll样受体3(TLR3)外生域的晶体结构。 科学,309,581 - 585。 17)塔布塔(K. (2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。 proc。 SCI。SCI。美国,102,10976 - 10980。16)Choe,J.,Kelker,M.S。和Wilson,I.A。(2005)人Toll样受体3(TLR3)外生域的晶体结构。科学,309,581 - 585。17)塔布塔(K.(2004)Toll样受体9和3作为对小鼠巨细胞病毒感染的先天免疫防御的重要组成部分。proc。SCI。SCI。natl。学院。美国,101,3516 - 3521。18)Davey,G.M.,Wojtasiak,M.,Proietto,A.I.,Carbone,F.R。,Heath,W.R。,&Bedoui,S。(2010)剪切边缘:CD8 T细胞免疫的启动:Surpes Simperx Simplex Virus 1型需要Cognate Tlr3在Vivo中的表达。J. Immunol。 ,184,2243 - 2246。 19)Oshiumi,H.,Okamoto,M.,Fujii,K.,Kawanishi,T.,Matsu-Moto,M.,Koike,S。,&Seya,T。(2011)TLR3/TICAM-1途径是对Poliovi-Rus Rus Infection的先天免疫反应的强制性。 J. Immunol。 ,187,5320 - 5327。 20)张,S.Y. (2007)疱疹患者的TLR3缺乏效率 -J. Immunol。,184,2243 - 2246。19)Oshiumi,H.,Okamoto,M.,Fujii,K.,Kawanishi,T.,Matsu-Moto,M.,Koike,S。,&Seya,T。(2011)TLR3/TICAM-1途径是对Poliovi-Rus Rus Infection的先天免疫反应的强制性。J. Immunol。 ,187,5320 - 5327。 20)张,S.Y. (2007)疱疹患者的TLR3缺乏效率 -J. Immunol。,187,5320 - 5327。20)张,S.Y.(2007)疱疹患者的TLR3缺乏效率 -
网络药理学是一种多靶点药物发现方法,用于探索药物与生物网络之间的相互作用。它有助于了解草药的治疗机制,特别是对于糖尿病等复杂疾病。Chandraprabha Vati 是一种经典的阿育吠陀配方,含有 37 种成分,其中许多成分具有抗糖尿病作用。本研究旨在研究 Chandraprabha Vati 的植物化学物质与抗糖尿病药物格列美脲之间的相互作用。使用 IMPPAT 选择 Chandraprabha Vati 的生物活性成分。使用 Swiss ADME 进行药代动力学预测,并使用 Way2Drug 预测药物间相互作用。使用 STRING 数据库构建蛋白质-蛋白质相互作用 (PPI),并在 Cytoscape 中进行网络分析。使用 DAVID 数据库进行基因本体和 KEGG 富集分析。药代动力学分析确定了 11 种关键植物化学物质,它们对参与格列美脲代谢的酶 CYP2C9 具有不同的影响。靶标重叠分析显示格列美脲和植物化学物质之间存在 34 个共同的枢纽基因,包括 EGFR、ESR1、PIK3CA、CYP2C9 和 SRC。这些基因与药物相互作用有关,其中 EGFR 成为关键因素。Chandraprabha Vati 中的植物化学物质,特别是 20-羟基孕-4-烯-3-酮、β-石竹烯和豆固醇,可能通过抑制 CYP2C9 与格列美脲相互作用。这可能会改变格列美脲代谢,增加不良反应的风险。需要进一步的临床研究来证实这些发现并指导安全的联合用药。
包括细胞增殖、细胞周期调控和 DNA 损伤反应,并且与多种癌症类型的癌症干细胞维持和化学耐药性有关。通过代谢环磷酰胺及其类似物(例如马磷酰胺;MF)等药物,ALDH3A1 导致肿瘤耐药性,突出表明它是化学增敏疗法的靶点。在目前的研究中,我们研究了一种新型 ALDH3A1 相互作用十二肽 (P1) 对 ALDH3A1 活性的抑制作用,表明 P1 显着降低了重组人蛋白和表达 ALDH3A1 的 A549 肺腺癌细胞中的酶功能。我们还与已建立的 ALDH3A1 抑制剂 CB29 一起评估了 P1 对 A549 对 MF 化学敏感性的影响。P1 和 CB29 都显着增强了 MF 化学敏感性。细胞活力和凋亡测定证实 P1 增加了 MF 诱导的细胞死亡。为了在分子水平上解释 P1 效应,用悬滴蒸汽扩散法制备了 ALDH3A1/P1 复合物晶体。在欧洲同步加速器站点收集了高分辨率 X 射线衍射数据,数据分析揭示了肽在结合底物口袋附近的确切结合位置,从而解释了观察到的抑制作用。生物信息学预测表明 P1 可能与其他 ALDH 家族成员相互作用,正在进行的实验重点是确认其选择性。这些发现表明 P1 具有作为化学增敏剂的良好潜力,并且是进一步研究 ALDH3A1 在癌症生物学中的作用的宝贵工具。