摘要:这项研究使用了电力动力学极化曲线的测量,电化学障碍光谱(EIS)和量子化学计算来检查硫酸和咖啡因在硫酸硫酸硫酸中硫酸腐蚀的抑制性和吸附性能(H 2 SO 4)溶液(H 2 So 4)溶液。获得的结果表明,在0.5 m H 2 SO 4溶液中,Linalool比咖啡因比咖啡因更有效。电位动力学极化曲线表明,Linalool充当混合型抑制剂,而咖啡因是0.5 m H H 2 SO SO 4溶液中低调钢的阳极型抑制剂。根据阻抗测量值,腐蚀机制发生在激活控制下。理论拟合也用于评估包括Langmuir,Flory-Huggins和动力学模型在内的各种吸附等温线。。这两种抑制剂都通过碳钢表面的物理吸附机制作用。但是,它们的吸附过程是一个非理想的过程。量子化学参数被计算并解释。
摘要 目的 . 脑机接口是开发免提、脑控设备的关键组件。脑电图 (EEG) 电极对于以非侵入性方式收集神经信号特别有吸引力。方法。在这里,我们探索使用在硅基碳化硅上生长的外延石墨烯 (EG) 来高灵敏度检测 EEG 信号。主要结果和意义。与商用干电极相比,这种干燥和非侵入性方法表现出显着改善的皮肤接触阻抗,以及卓越的稳健性,允许在高盐环境中长时间和重复使用。此外,我们报告了新观察到的 EG 电极表面调节现象。EG 与皮肤电解质的长时间接触使石墨烯的晶粒边界功能化,导致通过物理吸附形成薄薄的水表面膜,从而将其接触阻抗降低三倍以上。这种效果在高盐环境中尤为明显,也可以进一步定制为预处理,以提高 EG 传感器的性能和可靠性。
这项研究的目的是检查被用作五种潜在危险的偶氮染色的吸附剂的可能性,以从水溶液中取出。通过实验和计算DFT以及蒙特卡洛方法研究了AZO-DYES去除的GO的吸附特征。实验研究包括吸附剂剂量,接触时间和初始浓度的影响,而计算研究涉及DFT和Monte Carlo(MC)模拟。通过探索了通过搜索最低的可能性吸附复合物来通过MC预测,通过DFT研究进行了地理,电子和热力学参数的地理,电子和热力学参数。通过Langmuir模型评估实验数据,以描述平衡等温线。均衡数据非常适合Langmuir模型。热力学参数,即自由能的变化,焓变和熵变化表明,通过在GO分子筛子表面上吸附来去除偶氮-DYES是自发的。发现该过程的性质是涉及非共价相互作用的物理吸附。这项研究揭示了GO可以用作有效的吸附材料,用于从水溶液中吸附偶氮-DYES。
由于政府政策不断促进绿色替代品对有毒石化物质的替代品,最近在开发绿色腐蚀抑制剂方面的研究工作已经加剧。当前工作的理解是开发出源自4-氨基氨基氨酸的新型绿色和可持续的腐蚀抑制剂,以有效防止在腐蚀性环境中碳钢腐蚀。重量法被用于研究4--((呋喃-2-甲基甲基)氨基)反吡啶(FAP)和4-(((((吡啶-2-基甲基)氨基)抗吡啶)抗吡啶(PAP)的敏感性钢(1 M HCl中)1 M HCl。FAP和PAP分组为量子化学计算。dft用于使用在HCl中测试的抑制剂来确定碳钢腐蚀抑制的机理。结果表明,这些经过测试的抑制剂可以有效抑制1.0 M HCl的低碳钢腐蚀。在0.0005 m时,这些抑制剂的FAP和PAP效率分别为93.3%和96.5%。这些抑制剂在低碳钢表面遵守Langmuir吸附等温线。吸附能量的值,表明FAP遵循化学和物理吸附。
严格回顾了各种吸附剂在批量吸附和柱吸附中去除重金属的性能。介绍了吸附的基本思想,包括化学吸附和物理吸附及其组分、吸附剂和吸附质。研究了使用各种吸附质,即重金属(Cr、Cd、Pb、Ni 和 Cu)的吸附研究。深入讨论了一系列用于去除重金属的批量吸附和柱吸附的各种设计实验。参考了批量吸附和柱吸附研究的区别。本文深入解释了批量吸附和柱吸附中不同参数的澄清。完整介绍了柱吸附的各种参数,即入口离子浓度、流速、床高,以及批量吸附的各种参数,即接触时间、pH、温度和吸附剂剂量。很好地描述了两种吸附的等温线模型和动力学模型。此外,还完整观察到了设计柱吸附的突破曲线。最后,揭示了两种吸附在现实世界中的适应性困难。关键词:柱吸附;批量吸附;吸附剂;版权所有 © 2020 PENERBIT AKADEMIA BARU - 保留所有权利
对于快速,方便的操作以及原油和天然气的大量运输量,管道是对石油和天然气持续需求的经济关键答案[1]。管道通常是由于其良好的机械性能和低成本而从碳钢中产生的[2,3]。然而,众所周知,碳钢在侵略性环境中遭受了高腐蚀风险,这使得内管道腐蚀成为一个具有挑战性的问题,并可能导致巨大的经济损失和安全问题[1,4]。在可用的缓解方法中,使用腐蚀抑制剂是减慢内部管道腐蚀速率的最具成本效益和方便的方法[5]。有机抑制剂通过形成一个吸附的层来保护金属底物,该层可以阻碍水分子和其他腐蚀性物种进入表面的通道[6]。抑制有效性取决于抑制剂 /表面系统形成粘附和连续层的能力。极性功能性头组和抑制剂分子尾巴之间的分子间相互作用起着至关重要的作用[7,8]。基于表面和抑制剂之间的相互作用强度,抑制剂化合物已被描述为被物质化或化学吸附[9]。物理吸附描述了带电底物/抑制剂分子之间的弱电静态相互作用,为
腐蚀是不同材料面临的主要问题。人们采用了各种方法来防止这种现象;有些方法对环境造成了很大的影响,而且对人类有害。最近,人们使用绿色腐蚀抑制剂来克服这个问题。本文讨论了在没有和存在绿色腐蚀抑制剂麻疯树提取物的情况下,青铜在 3.5% NaCl 溶液中的腐蚀抑制行为。青铜试样是根据考古文物中使用的铸造青铜合金的化学成分制作的。利用失重、电化学技术、盐雾和比色测量研究了抑制剂浓度和操作温度对抑制效率的影响。结果表明,麻疯树提取物可以作为 3.5% NaCl 中的有效抑制剂。抑制效率 (IE%) 随抑制剂浓度的增加而增加,但随温度升高而降低。在 30 ppm 的麻疯树和室温 [~25 °C] 下,最高抑制效率为 90.36%。这种抑制作用归因于抑制剂在青铜合金表面的物理吸附。最后,基于本研究的结果,强烈推荐使用麻疯树提取物作为考古文物的绿色腐蚀抑制剂。关键词:腐蚀、抑制剂、青铜、麻疯树、绿色、文物。
几乎所有有机(光)电子器件都依赖于具有特定属性的有机/无机界面。这些属性反过来又与界面结构密不可分。因此,结构的变化会导致功能的变化。如果这种变化是可逆的,它将允许构建可切换的界面。我们用 Pt(111) 上的四氯吡嗪实现了这一点,它表现出双阱势,具有化学吸附和物理吸附最小值。这些最小值具有明显不同的吸附几何形状,允许形成可切换的界面结构。重要的是,这些结构促进了不同的功函数变化和相干分数(X 射线驻波测量),这是读出界面状态的理想属性。我们使用改进版本的 SAMPLE 方法执行表面结构搜索,并使用从头算热力学来解释热力学条件。这允许研究数百万个相称以及高阶相称的界面结构。我们确定了三种不同的结构类型,它们表现出不同的功函数变化和相干分数。使用温度和压力作为控制点,我们展示了在这些不同类型之间可逆切换的可能性,为有机电子学中的潜在应用创建了一个动态界面。
抽象确定染色体抑制染色体的腐蚀抑制,以不同的浓度为1M HCl和0.5m h 2 So 4。结果表明,碳钢的腐蚀速率随温度的升高而增加,并且随着提取物浓度的增加而降低。即使在较高浓度下,植物提取物的抑制作用在0.5M H 2中比1M HCl中更明显。观察到的温度和抑制效率趋势(1.e%)是因为随着浓度的增加,提取物的分子在碳钢表面吸收。关键字:抑制,腐蚀,Chromolaena odorata,天然产品。引言腐蚀是通过不必要的化学物质或电化学攻击的固体金属材料的破坏或破坏和偶然的损失,在其表面停滞不前。在其他情况下,为了最大程度地减少腐蚀,通常在流冷却系统中使用抑制剂。,有机,无机或两者的组合可用于抑制金属离子上的化学吸附和物理吸附机制,并在金属表面上形成屏障类型[1,2]在水中培养基中溶解的屏障类型的沉淀物是许多报道的感兴趣的。腐蚀涉及金属或合金及其环境之间的反应,热力学和动力学观点的腐蚀理论涵盖了盐,液体金属和气体中的水化学,扩散和溶解的原理。为防止金属腐蚀,一些
对产生相应的(z)-n' - (((1H-indol-3- yl)甲基甲基甲基甲基甲基)的相应的(z)-n' - (CH)的反应。 CH和CHN抑制剂的抑制效率分别分别减轻体重减轻,而CH和CHN抑制剂的抑制效率分别为约86.9%,CH和CHN抑制剂的抑制效率分别为降低的抑制剂,而CHN抑制剂的极化耐极能力高于CHN抑制剂的较高限制,而CHN抑制剂的浓度降低了,则在较大的情况下降低了COROSIT的差异。对于CH和CHN抑制剂,K ADS分别为11.4824 m -1和6.8667 m -1。吸附的自由能(∆ g o ads。)为-12.1685 kJ mol -1,CHN抑制剂为-14.7326 kJ mol -1。这表明CH和CHN抑制剂都被物理吸附到低碳钢表面上,而CHN则优先吸附。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。拉曼光谱分析对碳钢的分析揭示了表面上存在γ -FEOOH,而在与这些抑制剂的吸附相关的CH和CHN抑制剂后,检测到了其他峰。