物联网 (IoT) 目前已用于许多无线传感器网络 (WSN) 应用中。传统上,WSN 的能耗被视为主要问题之一。能耗主要来自传感、数据处理、通信和其他浪费的能量,例如空闲监听、碰撞和偷听。这些传感器节点通常由外部电源供电,因此使用寿命较短。幸运的是,无线能量收集 (WEH) 的不同方法已经得到改进。因此,唤醒无线电 (WuR) 成为 WEH 的补救措施,它提供有源、无源和半无源电路消耗和其他协议。例如,最常用、最令人信服和最有效的是无源 WuR,它可以通过减少不必要的空闲监听来显著增加传感器网络 (SN) 中的网络寿命。最后,本文提出了有源、半无源的最新技术,主要以无源 WuR 为中心,并涵盖了应用领域。然后,概述了与物理层、介质访问控制 (MAC) 和路由层相关的 WuR。最后,本文强调了唤醒技术在未来 IoT 应用中的潜在研究机会。
33789 非常适合用于低端到高端安全气囊系统,因为它允许设计人员根据所需的触发环路数量扩展设计,同时提供增强的安全性和系统可靠性。 特性 • 设计工作电压为 5.2 V V PWR 20 V,最高瞬态电压为 40 V • 具有可编程感应阈值的安全状态机 • 两个具有 PWM 功能的可配置高侧/低侧驱动器 • 四个 PSI5 卫星传感器主接口 • 自我保护和诊断功能 • 看门狗和系统上电复位 (POR) • 支持完整的安全气囊系统电源架构,包括系统电源模式控制、引爆器触发电源 (33 V)、卫星传感器 (6.3 V) 以及本地 ECU 传感器和 ECU 逻辑电路 (5.0 V) • 九个可配置开关输入监视器,用于简单开关和霍尔效应传感器接口,带内部电源 • 16 位 SPI 接口 • LIN 2.1 物理层接口
33789 非常适合用于低端到高端安全气囊系统,因为它允许设计人员根据所需的触发环路数量扩展设计,同时提供增强的安全性和系统可靠性。 特性 • 设计工作电压为 5.2 V V PWR 20 V,最高瞬态电压为 40 V • 具有可编程感应阈值的安全状态机 • 两个具有 PWM 功能的可配置高侧/低侧驱动器 • 四个 PSI5 卫星传感器主接口 • 自我保护和诊断功能 • 看门狗和系统上电复位 (POR) • 支持完整的安全气囊系统电源架构,包括系统电源模式控制、引爆器触发电源 (33 V)、卫星传感器 (6.3 V) 以及本地 ECU 传感器和 ECU 逻辑电路 (5.0 V) • 九个可配置开关输入监视器,用于简单开关和霍尔效应传感器接口,带内部电源 • 16 位 SPI 接口 • LIN 2.1 物理层接口
如今,由于可再生能源的广泛使用以及通过智能信息和通信技术处理的动态工作负载,电网已成为一个活跃的庞大资源生成和管理系统。存在一些新的操作,例如电力电气化、物理层的智能信息集成以及智能电网中的复杂互连。这些程序使用数据驱动的深度学习、大数据和机器学习范式来有效地分析和控制电力系统瞬态问题,并以稳健的准确性和及时性解决技术问题。因此,人工智能 (AI) 对于解决与暂态稳定性评估 (TSA) 和控制生成相关的问题至关重要。在本文中,我们全面回顾了 AI 及其子程序在解决 TSA 问题中的作用。本文的工作流程包括基于 AI 的智能电力系统结构以及电力系统 TSA 和 AI 应用对暂态情况的合理性。优于其他评论,本文讨论了基于 AI 的 TSA 框架和设计过程以及智能应用及其在电力系统暂态问题中的分析。而且我们不局限于AI,还结合与AI高度兼容的大数据方向,探讨基于AI-大数据的智能电网暂态稳定评估的未来趋势、机遇、挑战和开放问题。
一、光纤通信系统、子系统和网络 光学系统和子系统领域的稿件应关注能够实现前所未有的性能水平、明显超越以前建立的系统、明显超越以前发布结果的渐进式改进或代表总体上最先进的改进的演示。如果光学网络领域的稿件能够显著改善最先进的网络操作和性能,我们欢迎您提交。所有关于底层物理层的假设都必须切合实际,并且必须通过明确的参考资料或论文本身的详细技术描述来证实。专注于网络方面而不管底层物理光路如何的论文不适合在 JLT 上发表。JLT 非常重视实验工作、系统演示和子系统测量性能。如果稿件的技术内容主要包括模拟和理论推导和估算,并且超越了简单的性能优化并使用了切合实际的参数(可能从实验或其他实验论文中提取),我们欢迎您提交这些稿件。模拟或理论性手稿,如果只是为了推导而推导、与现实世界的操作限制脱节、或代表已发表作品的渐进式改进,则不适合在 JLT 上发表。
摘要:航空运输是一个庞大而复杂的系统,具有涌现性和自组织性,对其进行建模具有重要意义。为了更准确地对航空运输系统从物理设施到交通应用进行建模,本文构建了三层网络,包括航线网络、城市对航线网络和航班运营网络,其中航线网络为物理层,城市对航线网络和航班运营网络为应用层。此外,利用复杂网络理论这一有力工具讨论了三层网络的拓扑特性。此外,考虑到城市对航线路径的多样性,提出了一种基于模拟退火的框架来优化航线网络上每条城市对航线的路由路径,以缓解航线网络的交通拥堵,其中采用了一种精细的扰动解方法,即移除后选择(SAR)。实验结果表明,与默认路由路径、最短路由路径、随机路由路径相比,提出的路由优化策略可以分别使航线网络最大交通流量减少2.4%、4.6%、4.8%,表明提出的优化方法对缓解航线网络交通拥堵具有良好的效果。
摘要:世界物联网需要实现其安全解决方案。现有的物联网安全机制主要是由于复杂性,预算和节能问题而实施的。对于电池供电的物联网设备而言,尤其是如此,并且在该场中广泛部署它们应该具有成本效益。在这项工作中,我们提出了一种新的跨层方法,结合了现有的身份验证协议和现有的物理层射频指纹技术,以提供混合身份验证机制,这些机制实际上被证明是在网络中有效的。到目前为止已经提出了几种射频指纹方法,作为对多因素身份验证甚至是自己的支持,实用的解决方案仍然是一个挑战。即使是使用昂贵的设备的最佳系统也无法满足现实生活中的系统的精度结果。我们的方法提出了一种混合协议,该协议可以在物联网设备一侧节省能源和计算时间,与所使用的射频指纹的准确性成比例地,该指纹的准确性具有可测量的好处,同时保持可接受的安全水平。,我们实施了一个完整的系统,并实现了额外的能源成本的精度为99.8%,导致电池寿命仅降低约20%。
量子信息,计算和通信将对我们的世界产生重大影响。一个重要的子场将是量子网络和量子互联网。量子互联网的目的是启用从根本上无法实现古典互联网的应用程序。量子网络为通信系统提供了新的功能。这使双方能够生成长距离量子纠缠,该纠缠服务于许多任务,包括生成多方共享的秘密,这些秘密仅依赖于物理定律,分布式量子计算,实现的传感,对加密数据的量子计算以及安全的数据,以及安全的私人兼容拍卖。但是,量子信号是脆弱的,通常无法复制或放大。为了实现广泛的使用和应用程序的开发,必须开发允许量子协议透明地连接到基础硬件实现的方法,并做出快速而反应的决策,以减轻网络中的纠缠以减轻有限的量子寿命。大规模Quantunterking的体系结构正在开发中,与物理层以及低级错误管理和连接技术的理论和实验工作并行。本章旨在介绍量子信息,量子计算和量子网络研究的主要概念,挑战和机会。
对我们的行星系统的未来探索依赖于月球作为基地,并踏上了其他行星。因此,必须使用与该天体的高速数据连接。自由空间光学(FSO)通信将使连续宽带连接到地球。目前追求的概念包含数据中继卫星的绕着月球的卫星,每个卫星终端必须克服望远镜孔径限制的月球距离,并在光束指向和跟踪精确度上。我们提出了一个专用链接的概念,该链接来自安装在月球表面上的机器人望远镜站。我们研究了月球表面的这种FSO地面节点的概念架构,并在物理层的链路设计上聚焦。特别是,我们通过多个传输和接收供体增加了FSO通道容量。我们的发现鼓励在通常与空间任务一起使用的大链路距离的FSO通信中应用视线(LOS)多输入多输出(MIMO)技术,因为可以实现最大的MIMO容量。指导我们对链接几何形状的研究,这种连接在技术上似乎是可行的,该系统在相对较低的系统复杂性上与位于一个站点的接收器相对较低,而发射器相距仅几米。
元宇宙作为新一代信息技术的到来,将给人们的生产、生活和学习带来巨大的变化,教育元宇宙被视为一种新的教育发展形态,将对教育教学活动带来变革性的影响。在此背景下,本研究在教育元宇宙体系建设的技术、理论、架构支撑及其数字生态的基础上,开发了包括物理层、软件层、数据层和应用层的教育元宇宙体系通用架构。本研究尝试构建生理学虚拟实验教学系统,并以兔子运动呼吸调控实验为例,开展教育元宇宙在生理学实验教学中的研究。研究对象为A学校2019级临床医学班120名学生。通过分析学生在教育元宇宙虚拟实验课程中的学习成果,得出教育元宇宙在实验教学过程中能够促进教与学的共生;本研究探索了互联网教育新形态的路径,对于推动新型教育基础设施高效构建、教育现代化创新发展具有重要意义。