Hayden-Preskill协议是黑洞信息悖论的Qubit玩具模型。基于争夺的假设,发现量子信息被立即从模拟黑洞的量子多体系统中泄漏出来。在本文中,我们将规程介绍了系统具有对称性并研究对称性如何影响信息泄漏的情况。我们特别关注向上旋转数量的保证。开发一种部分去耦方法,我们首先表明对称性会导致泄漏延迟和信息残余。然后,我们澄清它们背后的物理:延迟的特征是与对称性相关的系统的热力学特性,并且信息递归与初始状态的对称破坏密切相关。这些关系将信息泄漏概率桥接到量子多体系统的宏观物理学上,并允许我们仅根据系统的物理性质来对信息进行泄漏。
讲师:Jayakanth Ravichandran 博士 办公室:VHE 714 办公时间:课后或预约 电子邮件:jayakanr@usc.edu。 助教:Shantanu Singh 先生 办公室:VHE 710 办公时间:有待确定 电子邮件:ssingh23@usc.edu 目标:本课程的目标是介绍材料系统中热力学和动力学的科学和应用。具体来说,我们将讨论热力学和动力学与这些系统中的合成、物理性质和相演变的相关性。内容将涵盖一系列材料系统,主要关注金属、合金、陶瓷和共价半导体。还将包括有关聚合物、准晶和亚稳态相的特别主题。 书籍:将提供讲座幻灯片,其中包含学习材料所需的所有信息和必要参考资料。在某些情况下,将补充讲座笔记和教科书摘录。这两本教科书将涵盖重要内容。
纳米材料已经在我们的许多日常产品中发挥着重要作用。它们不仅存在于现代电视或特殊太阳能电池等“高科技”产品中,也存在于某些防晒霜等“普通”产品中。纳米材料在生命科学和医学领域的应用也越来越多,例如用于疾病诊断或癌症治疗。所有纳米材料都具有一个重要特征,那就是它们的表面积相对于其体积而言非常大,这使得它们在许多应用领域如此受关注。然而,有时纳米材料的其他物理性质与“宏观”材料相比也会发生根本变化。例如,只要不超过一定尺寸,非常小的半导体晶体在用紫外线照射后就可以发出可见光;纳米材料的磁性与宏观材料的磁性可能有很大不同;人体细胞对纳米颗粒的反应通常与对较大物体的反应非常不同。
Preisach 模型长期以来一直被用作各种物理性质的磁滞现象的数学模型。本文的目的是证明 Preisach 模型可能找到其他非常有趣的应用。也就是说,如果将 Preisach 模型实现为具有互连矩形环路元件的设备,那么这种实现可以用作新型数据存储设备以及模拟全局优化器。本文由三部分组成。在第一部分中,简要总结了与 Preisach 模型相关的基本选择性事实并描述了其设备实现。在第二部分中,解释了此类实现作为新型数据存储设备的用途。最后,第三部分讨论了如何将 Preisach 模型类型的设备用作独特的模拟类型全局优化器。
摘要:经典物理学中的粒子是可区分的物体,可以根据其独特的物理性质单独挑选出来。相比之下,在物理哲学中,标准观点是同一类型的粒子(“相同粒子”)彼此完全无法区分,缺乏同一性。这种标准观点是有问题的:粒子不可区分性不仅与普通语言和经典物理理论中“粒子”的含义不相容,而且与该术语在当今物理学实践中的实际用法也不相容。此外,不可区分性理论阻碍了从量子粒子到我们通常在量子力学的经典极限中理解的“粒子”的平稳过渡。在阐述早期工作的基础上,我们在此分析了标准观点的前提,并讨论了避免这些问题和类似问题的替代方法。事实证明,这种替代方法与量子信息理论中的最新讨论有关。
在炼铁过程中,高炉是还原铁矿石的多相反应器。在此过程中,铁矿石和焦炭从炉顶装入,高温还原气体从炉底引入。随着气体上升,还原并熔化铁矿石,在粘结带中形成液态铁和炉渣。液体渗透过焦炭床到炉缸。在铁矿石的还原过程中,矿石软化,矿层被堆积的炉料压缩。众所周知,由于粘结带中矿石软化引起的结构变化对炉内气体渗透性有很大影响。矿石的软化行为受各种因素的影响,例如化学成分、还原气体成分、温度、物理性质等。为了了解粘结带,已经进行了几项实验来研究炉料的高温性质 1-6) 以及气体流动对粘结带中液体流动的影响
具有CN 4 Tetrahedra的三维框架的碳氮化物是材料科学的巨大愿望之一,预计硬度大于或可与钻石相媲美。经过三十多年来综合它们的效果,没有提供明确的证据证明其存在。在这里,报道了三种碳 - 亚硝基化合物的高压高温合成,Ti 14-C 3 N 4,HP 126-C 3 N 4和Ti 24-Cn 2,在激光加热的Diamond Anvil细胞中。使用Synchrotron单晶X射线差异来解决和修复它们的结构。物理性质研究表明,这些强烈共价键合的材料,超不可压缩和超智,还具有高能量密度,压电和光致发光特性。新颖的氮化碳在高压材料中是独一无二的,因为在100 GPA以上产生,它们在环境条件下可在空气中回收。
海洋沉积物覆盖了地球表面的近75%,是有机碳全球最大的储层之一。微生物在海洋沉积物中有机物的分解中起主要作用。因此,这些微生物的活性可能会对局部和全球生物地球化学循环产生深远的影响。碳生物地球化学的一个主要问题是确定是什么控制有机物对微生物的可及性或生物利用度。尚不清楚微生物本身是否最终控制降解率,还是主要取决于化合物的化学和物理性质和/或沉积设置和沉积物组成。在本演讲中,我将使用新型的同位素方法专注于对有机物降解动态的新见解,并探讨微生物代谢潜力和相互作用如何影响现代和古老海洋中的碳动员。
具有 CN 4 四面体三维骨架的碳氮化物是材料科学的伟大梦想之一,预计其硬度将高于或与金刚石相当。经过 30 多年的努力,仍然没有提供其存在的确凿证据。本文报道了在激光加热的金刚石压砧中高压高温合成三种碳氮化合物 tI 14-C 3 N 4 、hP 126-C 3 N 4 和 tI 24-CN 2 。利用同步加速器单晶 X 射线衍射解析和细化它们的结构。物理性质研究表明,这些强共价键合的材料具有超不可压缩和超硬的特性,还具有高能量密度、压电和光致发光特性。新型碳氮化物在高压材料中是独一无二的,因为它们是在 100 GPa 以上产生的,并且可以在环境条件下在空气中回收。
氧化铜因其半导体性质、高化学稳定性和经济效益而被确立为技术中的重要化合物。这些特性使其成为储能应用的良好候选材料。此外,由于其独特的特性,例如高功率、长循环寿命和环保性,超级电容器(电池和传统电容器之间的互补装置)的发展受到了广泛关注。此外,氧化铜引起了人们对制备可用于超级电容器制备的适用正极的兴趣。同时,氧化铜容易与极化液体和聚合物混合,并且具有相对稳定的化学和物理性质。氧化铜的电化学特性取决于形态,在这些装置中可以优化电极材料的适当结构设计。在这篇综述中,我们将探讨氧化铜的合成及其作为阴极材料的氧化还原机理,以及各种氧化铜化合物在制备高性能超级电容器中的应用。
