摘要虽然深度学习(DL)模型比传统的分布式水文模型(DHM)表现出较高的模拟精度,但它们的主要局限性在于不透明度和缺乏潜在的物理机制。DL和DHM之间对协同作用的追求是一个引人入胜的研究领域,但确定的路线图仍然难以捉摸。在这项研究中,一个新型框架无缝整合了编码为神经网络(NN)的基于过程的水文模型,一种用于绘制空间分布的额外NN,并从分水岭属性和基于NN的替换模型中的物理有意义的参数进行了核对,这些参数是开发的。多源观测被用作训练数据,并且该框架是完全可区分的,可以通过反向传播进行快速参数调整。基于框架建立了亚马逊盆地的混合DL模型(〜6×10 6 km 2),并且将全球尺度DHM的Hydropy编码为其物理骨架。与流量观测和重力恢复和气候实验卫星数据同时培训,混合模型的中位数NASH -SUTCLIFFE效率为0.83和0.77,分别用于流量和总水存储的动态和分布式模拟,比原始水疗模型高41%和35%。用替代NN替换原始的Penman – Monteith公式会产生更合理的潜在蒸发量(PET)估计,并在这个巨大的盆地中揭开PET的空间模式。解释了用于参数化的NN,以确定控制关键参数中空间可变性的因素。总的来说,这项研究为大数据时代的分布式水文建模提供了可行的技术路线图。
摘要:增强现实(AR)显示将虚拟图像叠加在周围场景上,在视觉上融合了物理世界和数字世界,为人机交互开辟了新视野。AR显示被认为是下一代显示技术之一,引起了学术界和工业界的极大关注。当前的AR显示系统基于各种折射、反射和衍射光学元件的组合,例如透镜、棱镜、镜子和光栅。受底层物理机制的限制,这些传统元件仅提供有限的光场调制能力,并且存在体积大、色散大等问题,导致组成的AR显示系统尺寸大、色差严重、视场窄。近年来,一种新型光学元件——超表面的出现,它是亚波长电磁结构的平面阵列,具有超紧凑的占地面积和灵活的光场调制能力,被广泛认为是克服当前AR显示器所面临的局限性的有效工具。本文旨在全面回顾超表面增强现实显示技术的最新发展。我们首先让读者熟悉增强现实显示的基本原理,包括其基本工作原理、现有的基于传统光学的解决方案以及相关的优缺点。然后,我们介绍光学超表面的概念,强调典型的操作机制和代表性的相位调制方法。我们详细介绍了三种超表面设备,即超透镜、超耦合器和超全息图,它们为不同形式的增强现实显示提供了支持。详细解释了它们的物理原理、设备设计和相关增强现实显示的性能改进。最后,我们讨论了超表面光学在增强现实显示应用中面临的现有挑战,并对未来的研究工作提出了展望。
量子到经典的转变是推动量子系统向其物理配置的完全经典描述的过程,其现象学是大量研究的对象。事实上,这种转变是否归因于新的基础物理学是一个有争议的问题 [1]。特别是,一个复杂性和规模不断增长的量子系统的退相干是否可以归因于内在机制或仅仅是周围环境的不可避免的存在,这仍存在争议 [2,3]。由于环境退相干不能为测量问题提供令人满意的解决方案,从而也不能为量子到经典的转变问题提供令人满意的解决方案,因此坍缩模型体现了另一种理论框架 [4,5]。通过将波函数坍缩提升为一种嵌入随机动力学的普适物理机制,坍缩模型以现象学的方式解释了量子到经典的转变,从而体现了量子力学的宏观现实修改的一个实例。这种修改是通过随机薛定谔方程和引入新的基本参数实现的。当用于评估微观系统的动力学时,坍缩模型的框架恢复了标准量子力学。对于更大的系统,相干性会迅速被抑制,以防止宏观可区分状态的大规模空间叠加。连续自发局部化 (CSL) 是研究最深入的坍缩模型之一 [6, 7]。它通过将额外的耗散项进入量子系统的主方程来描述位置基中相干性的丧失。这意味着,受坍缩机制影响的开放量子系统应该经历额外的耗散,而这种耗散不能归因于任何其他环境噪声源。测试这个模型是目前探索量子力学有效性极限的重要课题 [ 8 ]。然而,目前在量子力学中使用的大多数系统都预测了坍缩效应,
大脑由可电刺激的神经元网络组成,这些神经元网络受电压门控离子通道活动的调节。然而,进一步描绘大脑的分子组成,不会揭示任何让人联想到感觉、知觉或意识体验的东西。在古典物理学中,解决心智-大脑问题是一项艰巨的任务,因为没有物理机制能够解释大脑如何产生不可观察的内在心理世界意识体验,以及这些意识体验如何反过来引导大脑的底层过程朝着期望的行为发展。然而,这一挫折并不能证明意识是非物理的。现代量子物理学证实了希尔伯特空间中两种物理实体之间的相互作用:不可观察的量子态,即描述物理世界中存在的矢量,以及量子可观测量,即描述可在量子测量中观察到的算子。量子不通过定理进一步为研究量子大脑动力学提供了一个框架,该框架必须由物理上可接受的汉密尔顿量控制。意识中包含了不可观察的量子信息,这些信息整合在量子大脑状态中,解释了意识体验内在隐私的起源,并将意识过程的动态时间尺度重新审视为神经生物分子的皮秒构象转变。可观察的大脑是一个客观结构,由经典信息比特创建,这些信息比特受 Holevo 定理约束,并通过测量量子大脑可观察量获得。因此,量子信息理论澄清了不可观察的思维和可观察的大脑之间的区别,并为意识研究提供了坚实的物理基础。
量子力学波函数的自发坍缩模型 [1–4] 具有吸引力,因为它们不明确涉及人类知识;与量子力学的多世界方法 [5–7] 一样,这些模型“具体化”了量子波函数,即将其视为物理实体,但与多世界方法不同,它们不会产生将宇宙无限划分为更多不相互作用的子宇宙的哲学难题。 Diosi [8–10] 和 Penrose [11,12] 认为,没有坍缩,我们对时空曲率本身的理解就会崩溃。然而,自发坍缩是一个非幺正过程,这意味着它不能用任何仅引用现有幺正量子理论的模型来描述。那么问题仍然是,是否可以找到与实验相符的标准量子理论非幺正变换的自洽模型。关于自发坍缩的各种提议(例如,除上述提议外,还有参考文献 [13–18])给出了自发坍缩如何运作的框架,但都涉及了内在随机性,这种随机性可能被视为某些我们未知的底层物理现实的结果,也可能是某些已知物理实体(如重力)的结果,但这些实体在书本上没有得到处理,没有任何明确的机制。相比之下,在之前的一篇文章 [19] 中,我提出了一个模型,将量子力学的随机性完全视为已知物理实体不均匀性导致的涨落的结果。这将自发坍缩带入了物理定律的领域,而不是推测,并允许对该理论进行物理测试。特别是,参考文献 [19] 的模型提出了一种物理机制,通过该机制,费米子的局部本征态会自发坍缩到其两个允许状态之一。该模型具有以下特点:
近年来,在液晶(LCS)中观察到了在折射率光栅上耦合的光束之间的强两光束能传递。由于LC主管的重新定位而获得的0.2阶折射率的高调制使得可以增加一个梁的强度,并具有增益系数的强度近两个数量级,而固体光致热晶体中的强度几乎要大[1-6]。在具有杂化有机 - 无机细胞A LC层的方案中,将两个固体底物放置在两个或两个固体底物之间,其中一个或两个是光致热的。相交的相干光束会干扰并产生无机光致热性底物(S)中的空间电荷。空间电荷会产生一个空间周期性的电场,该电路穿透LC层并调节LC主管。由此产生的主管光栅引起折射率光栅,并确保在LC中传播的相交梁的耦合[7-11]。在讨论混合系统中主管重新定位的机制时,通过与LC旋转极化的相互作用[12-14],而不是通过LC静态介电性各向异性[15,16],而不是通过LC旋转极化[15-16],这是与董事与主任的太空场合的夫妇。对列中[12]和胆固醇LC细胞获得的实验结果的描述[13,14]需要一个额外的假设,使导演幅度是空间载体范围的非线性函数。这导致通过其有效的值替换了外部的系数,这取决于空间电荷范围。在[12]中讨论了这种非线性的可能物理机制。Despite the fact that the physical mechanism of interaction of the space-charge field with the director is the same for nematic and cholesteric LCs, the observed dependence of the gain coe ffi cient of the incident signal beam on the director grating spacing is very di ff erent.增益系数定义为
磷兰班(PLB)是一种跨膜小肽,可调节心脏肌肉中的肌质网Ca 2+ -ATPase(SERCA),但这种调节的物理机制仍然很熟悉。PLB降低了活性SERCA的Ca 2+敏感性,从而增加了泵循环所需的Ca 2+浓度。然而,当不存在ATP时,PLB不会降低Ca 2+与SERCA的结合,这表明PLB不会抑制SERCA Ca 2+ afintient。对这些看似冲突的结果的主要解释是,PLB在与Ca 2+结合相关的SERCA酶促循环中的转变减慢了转运Ca 2+的依赖性,而不会实际影响Ca 2+协调位点的等电数。在这里,我们考虑了另一个假设,即在没有ATP的情况下,Ca 2+结合的测量可忽略核苷酸结合的重要变构效应,从而增加了SERCA Ca 2+结合效果。我们推测PLB通过逆转这种同义来抑制SERCA。为了测试这一点,我们使用了荧光的SERCA生物传感器来量化非循环SERCA的Ca 2+在存在和不存在不可用的ATP-ANALOG AMPPCP的情况下。核苷酸激活增加了SERCA Ca 2+的原性,并且通过PLB的共表达逆转了这种效果。有趣的是,在没有核苷酸的情况下,PLB对Ca 2+的原性没有影响。这些结果调解了先前的ATPase分析与Ca 2+结合测定的冲突观察结果。此外,SERCA的结构分析揭示了连接ATP和Ca 2+结合位点的新型变构途径。我们提出的这一途径被PLB结合所破坏。因此,PLB通过通过ATP中断泵的变构激活而降低了SERCA的平衡Ca 2+。因此,PLB通过通过ATP中断泵的变构激活而降低了SERCA的平衡Ca 2+。
互操作性——及时、可操作地交换信息的能力——是电力系统一项关键但尚未开发的功能。近年来,电网进行了重大现代化,但技术和相关标准的普及仅略微提高了互操作性。分布式能源资源和其他技术的扩展,以及不断变化的客户期望,使互操作性挑战变得更加复杂。NIST 智能电网互操作性框架的此次修订使用不断发展的技术和电力系统架构作为描述一组新互操作性视角的背景。分布式和客户站点资源在未来的智能电网中占有重要地位,智能配电系统和其他关键集成商也是如此。随着社会对我们生产、管理和消费电力的物理机制进行现代化改造,系统运营和经济结构的策略将变得多样化。这种多样化将受益于——并最终依赖于——增强的互操作性。互操作性的好处是广泛的,可惠及所有规模的所有利益相关者。互操作性是对技术过时的一种对冲,通过增加次要用途的使用来最大化设备投资的价值,并通过允许不同利益相关者和设备之间协调的小行动产生重大影响来促进组合创新。互操作性价值主张可以在任何系统领域实现,从公用事业到客户等等。互操作性需要一种网络安全方法,在开放新的通信接口的同时管理风险。电网的预期结果和必须保护的信息交换必须协同考虑,并将受益于结构化的系统安全方法。新接口可以从现有的安全流程中受益。测试和认证是智能电网互操作性的关键推动因素。但是,当前行业专注于认证符合各个标准,这只是确保设备或系统互操作性的第一步,如果不付出大量额外努力,就无法实现互操作性。互操作性配置文件是针对互操作性挑战提出的解决方案。这些配置文件以物理和信息互操作性的概念为基础,并借鉴现有标准,描述了一组要求,这些要求在实施并通过测试和认证进行验证后,将确保跨设备和系统的互操作性。
辐射探测器在几种应用中都普遍存在,从文化遗产到环境监测,以及在许多娱乐性和应用研究中,包括少数,包括高能物理学(HEP),光子科学和铜管科学。从最早的设备开始,辐射的检测是基于不同的物理机制,例如热转导,气电离,闪烁等。[1]。与大多数其他传感器技术一样,半导体在辐射检测中也起着特殊的作用,其主要原因是:(i)它们可以直接将辐射转换为电信号,准备通过电子电路处理,并且(ii)通过利用集成电路技术来利用它们,从而带来了多个优势,导致了几个优势,例如小型成本,且可靠地效果,以及2个改善了[2.2 and Scrips and Import and Import and Import and Import and Import Import and Import and Import and Import and Import and Import and Import [2]。其物理特性(例如原子数,密度,电离能,带隙等)使硅特别适合于检测软X射线和带电的颗粒,而对于硬X射线/γ-rays和中子(用于检测应与合适的转化材料偶联的硅)并不有效[1]。但是,由于其制造技术的无与伦比的优势,硅是检测器应用最广泛使用的半导体。尽管硅探测器是相对简单的设备,但它们需要定制的织物技术来优化其电气和功能特性。日本,在该领域运营。直到最近,随着CMOS图像传感器的显着进展,用CMOS Technologies(所谓的单片活性像素)制成的像素探测器已证明可以产生满足的性能[3]。将来,CMOS像素的利用可能会更大,尤其是在X射线成像和带电的粒子跟踪中。但是,仍然希望定制检测器仍然是大多数应用程序的主要选择。硅探测器的市场被认为是微电子领域内的专业探测器,只有一家主要的工业制造商Hamamatsu Photonics K.K.大多数加工设施均由中小型企业(中小型企业)和主要位于欧洲的研究中心拥有。在本文中,我们将回顾硅辐射探测器技术。第2节将回忆起设备的基本原理和主要要求。第3节将被奉献
关键信息 – NIST 智能电网互操作性框架 互操作性(以及时、可操作的方式交换信息的能力)是电力系统一项关键但尚未开发的功能。近年来,电网进行了重大的现代化改造,但技术和相关标准的普及仅略微提高了互操作性。分布式能源资源和其他技术的扩展,以及不断变化的客户期望,使互操作性挑战变得更加复杂。NIST 智能电网互操作性框架的此次修订使用不断发展的技术和电力系统架构作为背景,描述了一组新的互操作性视角。分布式和客户站点资源在未来的智能电网中占有重要地位,智能配电系统和其他关键集成商也是如此。随着社会对我们生产、管理和消费电力的物理机制进行现代化改造,系统运营和经济结构的策略将变得多样化。这种多样化将受益于增强的互操作性,并最终依赖于此。互操作性的好处是广泛的,可惠及各个层面的所有利益相关者。互操作性可以防止技术过时,通过增加次要用途的使用率来最大化设备投资的价值,并通过允许不同利益相关者和设备之间协调的小动作产生重大影响来促进组合创新。互操作性价值主张可以在任何系统领域实现,从公用事业到客户甚至更远。互操作性需要一种网络安全方法,既能管理风险,又能打开新的通信接口。电网的预期结果和必须保护的信息交换必须协同考虑,并将受益于结构化的系统安全方法。新接口可以从现有的安全流程中受益。测试和认证是智能电网互操作性的关键推动因素。然而,目前行业专注于认证符合单个标准,这只是确保设备或系统互操作性的第一步,如果不付出大量额外努力,就无法实现互操作性。互操作性配置文件是解决互操作性挑战的拟议解决方案。这些配置文件基于物理和信息互操作性的概念并借鉴现有标准,描述了一组要求——在通过测试和认证实施和验证后——将确保跨设备和系统的互操作性。