结果:在这项研究中,为了获得具有高精度和强大可解释性的模型,我们利用了各种传统和尖端的特征选择和降低维度降低技术来处理自我相关特征和相邻的相关特征。然后将这些优化的特征送入学习排名以实现有效的DTA预测。在两个常用数据集上进行的广泛实验结果表明,在各种特征优化方法中,基于回归树的特征选择方法对于构建具有良好性能和稳健性的模型是最有益的。然后,通过利用Shapley添加说明值和增量功能选择AP-PRACH,我们可以获得高质量的功能子集由前150D特征组成,而Top 20D功能对DTA预测产生了突破性的影响。总而言之,我们的研究彻底验证了DTA预测中特征优化的重要性,并作为构建高性能和高解释模型的灵感。
摘要:目的:本研究旨在评估各种降维方法(包括主成分分析 (PCA)、拉普拉斯评分和卡方特征选择)对脑电图 (EEG) 数据集分类性能的影响。方法:我们应用了降维技术,包括 PCA、拉普拉斯评分和卡方特征选择,并使用线性回归、K 最近邻 (KNN) 和朴素贝叶斯分类器评估了它们对 EEG 数据分类性能的影响。对模型的分类准确性和计算效率进行了评估。结果:我们的研究结果表明,所有降维策略通常都能提高或保持分类准确性,同时减少计算负荷。值得注意的是,PCA 和 Autofeat 技术可提高模型的准确性。结论:使用降维技术可以通过减少计算需求而不影响准确性来增强 EEG 数据分类。这些结果表明,这些技术有可能应用于既需要计算效率又需要高精度的场景。本研究中使用的代码可在https://github.com/movahedso/Emotion-analysis找到。
大数据需要额外的资源来实现机器学习模型。Map-reduce 范式仅允许并行化该过程,但计算复杂性会增加。新的机器学习模型集合是为数据预处理(特征选择、错过日期插补等)和数据分析而开发的。
摘要:背景:创建模型来区分自我报告的心理工作量感知具有挑战性,需要机器学习来识别脑电图信号中的特征。脑电图频带比率量化了人类活动,但对心理工作量评估的研究有限。本研究评估了使用 theta-to-alpha 和 alpha-to-theta 脑电图频带比率特征来区分人类自我报告的心理工作量感知。方法:在本研究中,分析了 48 名参与者在休息和任务密集型活动时的脑电图数据。使用不同的脑电图通道簇和频带比率开发了多个心理工作量指标。使用 ANOVA 的 F 分数和 PowerSHAP 提取统计特征。同时,使用逻辑回归、梯度提升和随机森林等技术建立和测试模型。然后用 Shapley 加法解释来解释这些模型。结果:根据结果,使用 PowerSHAP 选择特征可以提高模型性能,在三个心理工作量指数中表现出超过 90% 的准确率。相比之下,用于模型构建的统计技术表明所有心理工作量指数的结果都较差。此外,使用 Shapley 值来评估特征对模型输出的贡献,可以注意到,ANOVA F 分数和 PowerSHAP 测量中重要性较低的特征在确定模型输出方面发挥了最重要的作用。结论:使用具有 Shapley 值的模型可以降低数据复杂性并改进对感知人类心理工作量的更好判别模型的训练。但是,由于选择过程中特征的重要性及其对模型输出的实际影响有所不同,因此结果有时可能不明确。
摘要。帕金森病 (PD) 是一种神经退行性疾病,其特征是大脑中多巴胺产生细胞的丧失。产生多巴胺的脑细胞的破坏会导致帕金森病,多巴胺是一种使脑细胞相互连接的化学物质。控制力、适应性和运动速度都由大脑中产生多巴胺的细胞控制。研究人员一直在研究尽快识别疾病早期出现的非运动症状的技术,以减缓疾病的进展。本研究提出了一种基于机器学习的帕金森病检测方法。所提出的检测技术采用了特征选择和分类技术。特征选择过程采用了 Boruta、递归特征消除 (RFE) 和随机森林 (RF) 分类器。检测帕金森病考虑了四种分类算法,即梯度提升、极端梯度提升、装袋和额外树分类器。我们发现,采用递归特征消除的 Bagging 比其他方法表现更好。帕金森症诊断中最低数量的语音特征的准确率达到 82.35%。
,包括数据清洁以处理缺失的值和错误,数据可视化以识别模式和离群值以及计算摘要统计信息以了解数据特征。此探索阶段对于做出有关数据准备,特征选择和适当分析技术的明智决定至关重要,最终导致更准确和有意义的见解。
简单摘要:先前的放射线研究已经解决了两类肿瘤分类问题(胶质母细胞瘤(GBM)与原发性CNS淋巴瘤(PCNSL)(PCNSL)或GBM相比转移)。但是,这种方法容易出现偏见,并排除其他常见的脑肿瘤类型。我们通过包括三种最常见的脑肿瘤类型(GBM,PCNSL和转移)来解决现实生活中的临床问题。我们使用不同的MRI序列组合研究了两个关键问题:基于肿瘤子区域(坏死,增强,水肿和联合增强的增强和坏死面罩)的性能变化,以及基于选择的分类符号模型/特征选择组合的性能指标。我们的研究提供了证据,表明基于放射素学的三类肿瘤分化是可行的,并且嵌入模型的性能要比具有先验特征选择的模型更好。我们发现,T1对比度增强是具有与多参数MRI相当性能的单个最佳序列,并且模型性能根据肿瘤子区域和模型/特征选择方法的组合而变化。
新兴的机器学习技术介绍机器学习技术:统计方法,例如判别分析和主要成分分析;有监督的学习,例如天真的贝叶斯分类器,K最近的邻居和神经网络;无监督的学习方法,例如自组织图和聚类;高维降低,例如线性判别分析(LDA),多种多样学习和特征选择方法;诊断分析和实际案例研究。
摘要:常见的空间模式(CSP)是基于运动图像的大脑计算机接口(BCI)中一种非常有效的特征提取方法,但其性能取决于最佳频段的选择。尽管已经提出了许多研究工作来改善CSP,但其中大多数工作都有大量计算成本和长期提取时间的问题。在本文中提出了基于CSP的三种新功能提取方法,并在本文中提出了一种基于非convex日志正规化的新功能选择方法。首先,EEG信号在空间上被CSP滤过,然后提出了三种新的特征提取方法。我们分别将它们称为CSP小波,CSP-WPD和CSP-FB。用于CSP小波和CSP-WPD,离散小波变换(DWT)或小波数据包分解(WPD)用于分解空间滤波的信号,然后将波浪系数的能量和标准偏差作为特征提取为特征。对于CSP-FB,通过过滤器库(FB)将空间过滤的信号滤光到多个频段中,然后将每个频段的方差的对数提取为特征。其次,提出了一种使用非convex log函数正规的稀疏优化方法,为我们称为log的特征选择,并给出了对数的优化算法。最后,集合学习用于辅助特征选择和分类模型构建。梳理特征提取和特征选择方法,总共获得了三种新的EEG解码方法,即CSP-Wavelet + Log,CSP-WPD + LOG和CSP-FB + LOG。使用四个公共运动图像数据集来验证所提出方法的性能。与现有方法相比,所提出的方法的最高平均分类精度分别为88.86、83.40、81.53和80.83,分别为1-4。CSP-FB的特征提取时间最短。实验结果表明,所提出的方法可以有效地提高分类精度并减少特征提取时间。全面考虑了分类精度和特征提取时间,CSP-FB +日志具有最佳性能,可用于实时BCI系统。
故障诊断和故障预测旨在通过用预测性或条件性维护策略取代预防性和纠正性维护来减少系统停机时间并优化其性能。诊断算法提供的系统当前健康状态知识以及预测算法提供的系统健康状态随时间演变的知识对于建立预测性和条件性维护必不可少,因此科学界对开发越来越有效的监测算法很感兴趣。在文献中,故障诊断和故障预测方法主要有四种:基于物理模型的方法、数据驱动方法、专家方法和混合方法。数据采集和存储工具以及处理算法的快速发展,加上产生大量数据流的仪器仪表和过程自动化技术的发展,促进了数据驱动方法的发展。本书中提出的论文提出了新的故障诊断和故障预测方法,为结构化和非结构化不确定性、多种故障的存在、缺乏对使用条件的先验知识、特征提取和选择、模型优化和在线实施等科学问题提供了解决方案。本书提供的各种应用支持,从微电子设备到大型系统,强调了每个应用领域特有的实施约束并提出了合适的解决方案。在 [1] 中,提出了一种深度学习方法,该方法结合小波变换用于不同频率和尺度下的特征提取,以及卷积神经网络 (CNN) 用于特征选择和故障分类。两个滤波阶段(小波变换和卷积函数)的关联可以处理过程的非线性机制和变量之间的高度相关性。该方法在制冷剂生产过程中得到了成功验证。 [2] 还将小波变换用作第一步数据处理,并与改进的粒子群优化 (PSO) 和具有线性增加惯性权重的反向传播 (BP) 神经网络相结合。其思想是将 PBNN 与改进的 PSO 算法结合起来进行参数优化,从而提高分类精度。该方法用于交流电源驱动的三相鼠笼感应电动机的故障诊断。考虑的故障包括轴承损坏、定子绕组、匝间短路和转子断条。[3] 也考虑了感应电动机,其研究重点是使用属性选择方法的影响,例如 ReliefF、基于相关性的特征选择 (CFS) 以及基于相关性和适应度值的特征选择 (CFFS)。概率神经网络 (PNN)、径向基函数神经网络 (RBNN) 和反向传播神经网络 (BPNN) 等神经分类器的性能。本研究分析了感应电机的电流信号以进行故障诊断。研究结果表明,ReliefF、CFS 和 CFFS 比未使用的特征选择方法具有更好的效率。[4] 讨论了可变运行条件下的故障诊断问题,其中数据处理是通过统计工具(经验模式分解)和 CFFS 的组合来完成的。