背景:临床注释包含与患者过去和当前健康状况有关的结构化数据之外的上下文化信息。目标:本研究旨在设计一种多模式深度学习方法,以使用入院临床注释和易于收集的表格数据来提高心力衰竭(HF)的医院结果的评估精度。方法:多模式模型的开发和验证数据是从3个开放式美国数据库中回顾性得出的,包括重症监护III V1.4(MIMIC-III)的医学信息MART和MIMIC-IV V1.0和MIMIC-IV V1.0,从2001年至2019年的研究中收集了来自2019年的教学医院,并从2019年进行了研究。 2015。研究队列由所有关键HF患者组成。分析了临床注释,包括主要投诉,当前疾病的历史,体格检查,病史和入院药物以及电子健康记录中记录的临床变量。我们为院内患者开发了一个深度学习死亡率预测模型,该模型接受了完整的内部,前瞻性和外部评估。使用综合梯度和沙普利添加说明(SHAP)方法来分析危险因素的重要性。结果:该研究包括发育套件中的9989(16.4%)患者,内部验证集中的2497(14.1%)患者,前瞻性验证集中的1896年(18.3%),外部验证集中的7432(15%)患者。在早期评估中,病史和体格检查比其他因素更有用。模型的接收器工作特性曲线下的面积为0.838(95%CI 0.827-0.851),0.849(95%CI 0.841-0.856)和0.767(95%CI CI 0.762-0.772),对于内部,前瞻性,前瞻性,外部效力,以及外部效力。多峰模型的接收器操作特性曲线下的面积优于所有测试集中的单峰模型的区域,而表格数据有助于更高的歧视。结论:结合入学笔记和临床表格数据的多模式深度学习模型显示,有希望的功效是评估HF患者死亡风险的潜在新方法,提供了更准确,更及时的决策支持。
简介:三阴性乳腺癌(TNBC)的特征是没有雌激素受体(ER),孕酮受体(PR)和人表皮生长因子受体2(HER2)表达。它具有高度侵入性和侵略性,使其成为预后最差的乳腺癌的亚型。目前,全身化疗是主要的治疗选择,但靶向疗法仍然无法使用。因此,迫切需要确定新型的生物标志物来早期诊断和治疗TNBC。方法:我们对转录组和甲基化数据进行了综合分析,以鉴定甲基化调节的差异表达基因(MDEGS)。基因本体论(GO)分析,基因和基因组(KEGG)途径分析的京都百科全书,以及蛋白质 - 蛋白质相互作用(PPI)网络分析,以研究HUB基因对TNBC诊断和预后的影响。随后,使用逆转录定量PCR(RT-QPCR)和定量甲基化特异性PCR(QMSP),在TNBC细胞系MDA-MB-231和正常乳腺上皮细胞系MCF-10A中验证了关键基因的表达水平和DNA甲基化模式。结果:通过转录组分析积分分析确定了98个上调和87个下调基因。通过融合甲基化数据,我们进一步鉴定了22种具有高甲基化表达(甲基甲基甲基化)和32个基因,而高甲基化表达较低(高甲基化)。Kaplan-Meier生存分析表明,KIF11,CCNB1和PLK1与TNBC中较高的危险比(HR> 1,p <0.05)相关。低位级主要参与核分裂,细胞器裂变,纺锤体形成,染色体和动孔发育以及蛋白质结合。KEGG途径分析表明,这些基因富含孕酮介导的卵母细胞成熟,细胞周期调节和卵母细胞减数分裂。超高与细胞增殖,激素反应,疼痛,细胞外基质组成以及与硫化合物,肝素和糖胺聚糖的结合有关。PPI网络分析确定了七个中心基因-EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23 - 它们在TNBC组织中都显着过表达并彼此正相关(p <0.05)。接收器的工作特性曲线分析表明,曲线下的面积(AUC)的所有七个基因都超过0.9(p <0.05),表明诊断潜力很强。体外验证实验表明,与MCF-10A细胞相比,MDA-MB-231细胞表现出较高的KIF11,CCNB1和PLK1的mRNA表达水平,而其DNA甲基化水平较低。结论:这项研究确定了七个少量级,包括EXO1,KIF11,FOXM1,CENPF,CCNB1,PLK1和KIF23,它们参与了细胞周期和有丝分裂过程的调节,并且具有TNBC的诊断生物标志物的重要性。值得注意的是,KIF11,CCNB1和PLK1的表达升高与TNBC患者的预后不良有关。这些发现有助于提高对表观遗传学分子机制的理解
背景:心脏骤停(CA)是重症患者死亡的主要原因。临床研究表明,对CA的早期鉴定会降低死亡率。算法能够使用多元时间序列数据来预测具有高灵敏度的Ca。但是,这些算法遭受了很高的错误警报率,它们的结果在临床上不可解释。目标:我们使用多分辨率统计特征和基于余弦相似性的特征提出了一种集成方法,以及时预测Ca。此外,这种方法提供了临床上可解释的结果,临床医生可以采用这些结果。方法:使用来自“重症监护IV数据库”和EICU协作研究数据库的医学信息MART的数据回顾性分析患者。基于被诊断为心力衰竭的成年人的24小时时间窗口的多元生命体征,我们提取了基于多解决的统计和基于余弦相似性的特征。这些功能用于构建和发展梯度提升决策树。因此,我们采用了对成本敏感的学习作为解决方案。然后,进行了10倍的交叉验证以检查模型性能的一致性,并使用Shapley添加说明算法来捕获所提出模型的整体可解释性。接下来,使用EICU协作研究数据库进行了外部验证以检查概括能力。根据CA的及时预测,提出的模型达到了高于0.80的AUROC,以预测提前6小时的CA事件。结果:所提出的方法在接收器工作特性曲线(AUROC)下产生了0.86的总面积,并且在Precision-Recall曲线(AUPRC)下为0.58。所提出的方法同时提高了精度和灵敏度以增加AUPRC,从而减少了错误警报的数量,同时保持了高灵敏度。此结果表明所提出的模型的预测性能优于先前研究中报告的模型的性能。接下来,我们证明了特征重要性对所提出方法的临床解释性的影响,并推断了非CA和CA组之间的影响。最后,使用EICU协作研究数据库进行了外部验证,并且在一般重症监护病房的人群中获得了0.74的AUROC,AUPRC为0.44。结论:拟议的框架可以为临床医生提供更准确的CA预测结果,并通过内部和外部验证降低错误警报率。此外,临床上可解释的预测结果可以促进临床医生的理解。此外,生命体征变化的相似性可以为患有心力衰竭相关诊断患者的CA预测的时间模式变化提供见解。因此,我们的系统足以适合常规临床使用。此外,关于拟议的CA预测系统,在未来的数字健康领域开发了临床成熟的应用程序。
基于超导电路的超导量子比特由超导电容器和具有 transmon 几何的约瑟夫森结组成,广泛应用于高级量子处理器,追求可扩展的量子计算。transmon 的量子比特频率的调整依赖于超导环路中两个超导体-绝缘体-超导体 (S-I-S) 约瑟夫森结的超电流之间的磁通量相关干扰。基于超导体-半导体-超导体 (S-Sm-S) 材料的约瑟夫森结为门可调 transmon 提供了一种可能性,称为“gate-mon”,其中量子比特频率可以通过静电平均值进行调整。在 III-V 材料平台上实现的 gatemon 显示出 transmon 替代品的令人瞩目的发展,但在可扩展性方面仍然存在一个大问题。硅锗 (SiGe) 异质结构由于其高空穴迁移率和 Ge-金属界面的低肖特基势垒而成为承载混合器件的潜在平台之一。此外,与硅基半导体行业的兼容性是扩大量子比特平台的一个有力优势。在本论文中,我们基于 SiGe 异质结构中的 Al-Ge-Al 约瑟夫森结开发了门控。首先,建立了自上而下方法中约瑟夫森场效应晶体管 (JoFET) 的稳健制造配方。我们对 JoFET 进行了详尽的测量,以研究它们随栅极电压、温度和磁场变化的特性。这些器件显示了临界电流 (I C ) 和正常态电阻 (R N ) 的栅极可调性。估计这些器件具有高透明度的超导体-半导体界面,SiGe异质结构上的高 I C R N 乘积证明了这一点。在有限电压范围内,观察到对应于多个安德烈夫反射 (MAR) 的特征。然后,我们在 SiGe 异质结构上制造和表征氮化铌 (NbN) 超导谐振器。我们在传输模式下测量谐振器,并从传输系数 (S 21) 中提取谐振频率 (f r)、内部品质因数 (Q i) 和耦合品质因数 (Q c)。随后,我们开发了制造工艺,将与电容器分流的 Al-Ge-Al 结(换句话说,gatemon)集成到谐振器方案中,并根据设计进行制造。我们在其中一个制造的 gatemon 中演示了反交叉特性。使用双音光谱技术映射门控器的谐振频率,发现它是门可调的。量子位具有较大的光谱线宽,这意味着相干时间较低。此外,我们对超导量子干涉装置 (SQUID) 几何中的结进行了电流相位关系 (CPR) 测量。我们可以证明结构成非正弦 CPR。此外,在辐照结的电流-电压特性曲线中观察到整数和半整数 Shapiro 阶跃。这表明我们的结具有 cos 2 φ 元素,这可以为受保护的量子位开辟另一种可能性。