背景:心脏骤停(CA)是重症患者死亡的主要原因。临床研究表明,对CA的早期鉴定会降低死亡率。算法能够使用多元时间序列数据来预测具有高灵敏度的Ca。但是,这些算法遭受了很高的错误警报率,它们的结果在临床上不可解释。目标:我们使用多分辨率统计特征和基于余弦相似性的特征提出了一种集成方法,以及时预测Ca。此外,这种方法提供了临床上可解释的结果,临床医生可以采用这些结果。方法:使用来自“重症监护IV数据库”和EICU协作研究数据库的医学信息MART的数据回顾性分析患者。基于被诊断为心力衰竭的成年人的24小时时间窗口的多元生命体征,我们提取了基于多解决的统计和基于余弦相似性的特征。这些功能用于构建和发展梯度提升决策树。因此,我们采用了对成本敏感的学习作为解决方案。然后,进行了10倍的交叉验证以检查模型性能的一致性,并使用Shapley添加说明算法来捕获所提出模型的整体可解释性。接下来,使用EICU协作研究数据库进行了外部验证以检查概括能力。根据CA的及时预测,提出的模型达到了高于0.80的AUROC,以预测提前6小时的CA事件。结果:所提出的方法在接收器工作特性曲线(AUROC)下产生了0.86的总面积,并且在Precision-Recall曲线(AUPRC)下为0.58。所提出的方法同时提高了精度和灵敏度以增加AUPRC,从而减少了错误警报的数量,同时保持了高灵敏度。此结果表明所提出的模型的预测性能优于先前研究中报告的模型的性能。接下来,我们证明了特征重要性对所提出方法的临床解释性的影响,并推断了非CA和CA组之间的影响。最后,使用EICU协作研究数据库进行了外部验证,并且在一般重症监护病房的人群中获得了0.74的AUROC,AUPRC为0.44。结论:拟议的框架可以为临床医生提供更准确的CA预测结果,并通过内部和外部验证降低错误警报率。此外,临床上可解释的预测结果可以促进临床医生的理解。此外,生命体征变化的相似性可以为患有心力衰竭相关诊断患者的CA预测的时间模式变化提供见解。因此,我们的系统足以适合常规临床使用。此外,关于拟议的CA预测系统,在未来的数字健康领域开发了临床成熟的应用程序。
主要关键词