原子移离平衡位置后,原子核会从电子云中移开。光子的电场会与原子核(电子云偶极子)产生共振(场是附加的),从而被吸收。硅、锗等共价材料往往是较差的光吸收剂。需要晶格振动才能在晶体中诱导偶极子,然后光才能被吸收=间接间隙。
使用具有参数初始条件的 (3+1) 维混合框架,我们研究了重离子碰撞中已识别粒子(包括介子、K介子、质子和 Lambda 粒子)的快速度相关定向流 v 1 ( y )。考虑了涉及 Au+Au 碰撞的情况,在 √ s NN 下进行,范围从 7.7 到 200 GeV。使用测量的带电粒子伪快速度分布和净质子快速度分布来约束束流方向的动态。在该框架内,介子的定向流由倾斜源的侧向压力梯度驱动,重子的定向流主要由于横向扩展驱动的相对于束流轴的初始不对称重子分布。我们的方法成功地再现了介子和重子的 v 1 快速度和束流能量依赖性。我们发现重子的v 1 ( y )对重子的初始停止有较强的约束力,而定向流与介子的v 1 ( y )一起可以探究有限化学势下致密核物质的状态方程。
重离子碰撞物理学的主要目标之一是探索奇异物质态的性质,即热、致密且难相互作用的重子物质。它可以在实验室中通过相对论能量下的重核碰撞来重现。格点量子色动力学 (QCD) 计算表明,在高能和低重子密度下,夸克胶子等离子体 (QGP) 到强子气体的转变是平稳的 [1]。人们普遍认为,最终以三临界点结束的一级相变发生在 √ s = 3 至 10 GeV 之间的能量范围内,例如,参见 [2] 及其参考文献。各种过去和正在进行的实验,如相对论重离子对撞机 (RHIC) 上的束流能量扫描 (BES) 和 BES II [ 3 , 4 ]、欧洲核子研究中心的超级质子同步加速器 (SPS) 上的实验,都在探索与金和铅离子束的碰撞,以发现上述能量范围内的任何特殊性。然而,到目前为止,还没有观察到一级相变和三临界点。未来的实验,如基于核子加速器的离子对撞机设施 (NICA) 和反质子和离子研究设施 (FAIR) 旨在以更高的亮度在给定能量下进行碰撞,这让我们有希望在那里看到一些新的东西。观察相变的困难源于许多因素。其中一些是QGP相存在时间极短(大约10 − 24 fm/ c),系统中粒子数少,物质在坐标和动量空间中都具有高度各向异性等。探测器记录的所有有价值的信息大约是数千个具有相应能量和动量的粒子。因此,很难对它们来自的介质做出任何合理的假设。
1美国休斯顿大学休斯顿大学物理系77204,美国2杜克大学,北卡罗来纳州达勒姆大学27708,美国3 Helmholtz研究学院HESSE HESSE HESSE(HFHF)GSI HELMHOLTZ HELMHOLTZ中心GSI HELMHOLTZ CENTRIC for ION heave Ion Physicics fornis frankfurt,60438 Frankfurtirant frankfurtirant frankfurt。 Physik,Johann Wolfgang Goethe-Universität,Max-von-laue-STR。1,D-60438德国法兰克福5 GSIHelmholtzentrumfürSchwerionenforschungGmbh,Planckstrasse 1,D-64291 D-64291德国Darmstadt,德国6宾夕法尼亚州立大学,宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州16801,宾夕法尼亚州宾夕法尼亚州立大学Universit`A di Torino和INFN Torino大学,通过P. Giuria 1,I-10125,I-10125,意大利的I-10125,8物理学系和量子理论实验室,极端理论,伊利诺伊州芝加哥,伊利诺伊州芝加哥,伊利诺伊州芝加哥大学60607,美国9 Kadanoff理论中心,芝加哥大学,芝加哥,伊利诺伊州芝加哥大学6066637,美国芝加哥,
量子色动力学 (QCD) 相图的探索在很大程度上依赖于在不同束流能量下进行的重离子碰撞实验 [ 1 , 2 ]。这些碰撞跨越不同阶段,演变过程错综复杂,需要一个多阶段的理论框架。该框架已成功描述了大量测量结果。最终强子的集体流为我们了解早期动力学、传输特性和所产生的致密核物质的状态方程 (EoS) 提供了至关重要的见解 [ 3 ]。定向流 (v 1 ) 表示集体侧向运动,对早期演化和状态方程尤其敏感 [ 3 , 4 ]。dv 1 / dy | y = 0 的非单调行为(v 1 ( y ) 在中快速度附近的斜率)已被提出作为强子物质和夸克胶子等离子体 (QGP) 之间一级相变的指示 [ 3 , 5 , 6 ]。这是因为相变引起的 EoS 软化可能导致膨胀过程中定向流的减少,从而导致 dv 1 / dy | y = 0 与束流能量的关系达到最小值 [3]。然而,强调 v 1 ( y ) 对各种动力学方面的敏感性至关重要。人们已经利用各种模型来计算从 AGS 到最高 RHIC 能量的 v 1 ( y ),结果差异很大,但没有一个能有效地描述跨束流能量测量的主要特征 [7,8]。在本文中,我们使用具有参数初始条件的 (3 + 1) 维混合框架解释了介子和重子的 v 1 ( y ),并揭示了它对有限化学势下重子初始停止和致密核物质 EoS 的约束能力 [9]。
核物质在密度下的状态方程(EOS)几次,正常核物质密度最近引起了人们的注意,因为它影响了中子星和中子恒星合并的正常,而后者现在由重力波干涉仪探测,请参见E.G.[1,2]。EOS的独立约束是由在e Kin〜0范围内进行的重型离子碰撞实验实验提供的。1至实验室框架中的每个核子(GEV)的几个GEV [3-5]。通过比较测量的集体流数据和转移模型计算,在过去几十年中实现了一系列约束,请参见例如[6 - 9]。使用
了解致密强子物质的行为是核物理学的一个核心目标,因为它决定着超新星和中子星等天体物理物体的性质和动力学。由于量子色动力学 (QCD) 的非微扰性质,人们对这些极端条件下的强子物质知之甚少。在这里,格点 QCD 计算用于计算热力学量和 QCD 状态方程,这些方程发生在具有受控系统不确定性的广泛同位旋化学势范围内。当化学势较小时,与手性微扰理论一致。与大化学势下的微扰 QCD 进行比较,可以估计超导相中的间隙,并且该量与微扰测定结果一致。由于同位旋化学势的配分函数 μ I 限制了重子化学势的配分函数 μ B ¼ 3 μ I = 2 ,这些计算还首次在很宽的重子密度范围内对对称核物质状态方程提供了严格的非微扰 QCD 界限。
经典控制系统建模的局限性、多输入多输出系统。动态系统的状态空间建模、状态变量定义 - 状态方程。输出变量 - 输出方程。用向量矩阵一阶微分方程表示。矩阵传递函数、状态转换矩阵 - 矩阵指数、属性、状态方程的数值解、示例。状态方程的正则变换,特征值,实数不同,重复。可控性和可观测性-定义-意义。数字控制系统:概述-优点,缺点。
氢(H 2)是一种干净的燃料和能量过渡到绿色可再生能源的关键促进器,到2050年才能实现零排放的方法。地下H 2存储(UHS)是一种重要的方法,为低碳经济提供了一种永久解决方案,以满足全球能源需求。但是,UHS是一个复杂的程序,在该过程中,由于与垫子气和储层液混合,可以影响H 2污染,孔尺度散射和大规模存储容量可能会受到H 2污染的影响。文献缺乏对现有热力学模型的全面研究,以计算H 2蓝色混合物的准确传输特性对于有效设计各种H 2存储过程所必需的必不可少的混合物。这项工作基于国家(EOSS),彭 - 鲁滨逊(PR)和Soave Redlich-kwong(SRK)(SRK)及其对波士顿 - 马西亚斯(PR-BM)和Schwartzentruber-Renon(SRK)的修改以及其在可靠性方面的可靠性,并预测热液的属性,并涵盖了Hyphersical propertial hyphers, C 2 H 6,C 3 H 8,H 2 S,H 2 O,CO 2,CO,CO和N 2除了基于Helmholtz-Energy的EOSS(即PC-SAFT和GERG2008)。基准模型反对涉及较大压力(0.01至101 MPa),温度(92 K至367 K)和摩尔级分(0.001至0.90)h 2的蒸气 - 液平衡(VLE)的实验数据。这项工作的新颖性在于基准和优化上述EOSS的参数,以研究VLE信封,密度和其他关键运输特性,例如热容量和Joule -joule -joule -thomson h 2混合物的Thomson系数。结果突出了依赖温度的二进制相互作用参数对嗜热物理特性的计算的显着影响。SR-RK EOS在立方EOSS中与均方根误差和绝对平均偏差之间的VLE数据表现出最高的一致性。PC-SAFT VLE模型显示出与SR-RK相当的结果。敏感性分析强调了杂质对在H 2存储过程中更改H 2蓝色流的热物理行为的高影响。©2022作者。由Elsevier Ltd.这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
核物质的状态方程,即核子结合能、温度、密度以及同位旋不对称性之间的热力学关系,长期以来一直是核物理和天体物理领域的研究热点。了解核状态方程对于研究原子核的性质、中子星的结构、重离子碰撞(HIC)动力学以及中子星并合都至关重要。重离子碰撞提供了一种在地面实验室中生成高密度和同位旋不对称核物质的独特方法,但形成的致密核物质仅存在很短的时间,人们无法在实验中直接测量核状态方程。实际应用中,通常采用将现象学势作为输入的输运模型,通过与实验室测得的可观测量进行比较来推导核状态方程。超相对论量子分子动力学 (UrQMD) 模型已广泛应用于研究从费米能量 (40 MeV/核子) 到 CERN 大型强子对撞机能量 (TeV) 的 HIC。随着 UrQMD 模型的核平均场势项、碰撞项和团簇识别项的进一步改进,FOPI 合作组最近测量的轻带电粒子集体流和核停止数据可以重现。在本文中,我们重点介绍了我们最近使用 UrQMD 模型研究核 EOS 和核对称能的成果。讨论了从传输模型和 HIC 实验中提取核 EOS 的新机遇和挑战。