• 这是基于自制低温太赫兹扫描近场光学显微镜 (SNOM) 的新进展,它能够探测太赫兹频率范围内材料的纳米电磁响应。本研究可视化了电子-光子准粒子的传播,并揭示了狄拉克流体中的强电子相互作用。手稿现已发布在 arXiv (arXiv:2311.11502) 上 • 在本研究中,我们测量了单层石墨烯中移动极化子波包的动力学。等离子体极化子的运动记录在具有超精细时空像素的 (1+1)d 图上。 • 我们开发了基于石墨烯交流电导率计算极化子群速度和极化子寿命的理论模型。这些模型完全捕捉了不同温度下费米液体和狄拉克流体状态下的实验观测结果。 • 我们对极化腔模式进行了温度依赖性研究,并证明了在 55K 下极化寿命长达 5 皮秒。 • 我们研究了狄拉克流体中的电子相互作用如何改变极化动力学。极化重正化在电荷中性点最为明显,其中等离子体极化子由相同密度的热激活电子和空穴维持。重正化表现为群速度和极化寿命的降低,这两者都取决于载流子密度。我们能够定量提取石墨烯的电子散射率和精细结构常数,这可作为石墨烯中电子相互作用强度的量度。
本文结构如下。我们的主要技术结果是定理 2.18,它表明与推论 1.5 中的格 L 类似的格 L 具有高概率的短向量基。使用简单的数几何(参见第 2.5 节),我们将这个问题简化为估计半径不断增长的球中的格点数。不幸的是,我们无法直接获得合适的 L 格点数。我们通过从论证一开始就考虑不同的格 LM 来解决这个问题(使用第 2.2 节中的引理)。在第 2.3 节中,我们根据模 N 的狄利克雷特征展开 LM 的格点数。这会产生一个可以精确估计的主项和一个误差项。证明的核心在于使用模 N 的狄利克雷特征的零密度估计来无条件地限制这个误差项。最后,我们在第 3 节中证明了我们的量子算法应用(定理 1.1 和 1.2)。
极性子是轻质的准颗粒,可控制纳米级量子材料的光学响应,从而实现片上的通信和局部感应。在这里,我们报告了封装在六角硼(HBN)中的Magne offer-Nedral石墨烯中的Landau-Phonon Polariton(LPP)。这些准颗粒从石墨烯中的狄拉克磁饰模式与HBN中的双曲线声子极化模式的相互作用中脱颖而出。使用红外磁纳米镜检查,我们揭示了在量化的磁场处的真实空间中完全停止LPP传播的能力,违反了常规的光学选择规则。基于LPP的纳米镜检查还分别说明了两个基本多体现象:费米速度的恢复速度和依赖于场的磁性磁性。我们的结果突出了磁性调谐的狄拉克异质结构对精确的纳米级控制的潜力和光 - 物质相互作用的传感。
k空间中的电势和bloch带。b |时间周期性潜力和能量带有浮子带。c,d | 2D狄拉克系统中的浮雕工程,导致浮点边带(红色)和谐振缝隙在交叉点开口。e,f | Ti Bi 2 Se 3中Trarpes对浮标状态的实验观察结果。在不同延迟时间(e)的表面狄拉克锥的trarpes光谱。trarpes频谱在零延迟时间(F)。g |光引起的异常大厅电流信号。h |光诱导的霍尔电导与能量的关系。i |使用Floquet理论在光激发下的有效带结构。面板E是参考文献中的trarpes数据。69,并从参考文献中转载。291,Springer Nature Limited。面板F从参考文献转载。69,Springer Nature Limited。面板G-i从参考文献中转载。71,Springer Nature Limited。71,Springer Nature Limited。
摘要:由于成本效益和易于操作,室温长波红外(LWIR)检测器比低温溶液优先。当前未冷却的LWIR探测器(例如微量体计)的性能受到降低的灵敏度,缓慢的响应时间和缺乏动态光谱可调性的限制。在这里,我们提出了一个基于石墨烯的有效室温LWIR检测器,利用其可调的光学和电子特性,具有高检测性和快速响应时间。固有的弱光吸收可以通过与光腔耦合的图案化石墨烯上的狄拉克等等离子增强。通过不对称载体生成环境,通过Seebeck效应将吸收的能量转化为光伏。此外,通过静电门控实现8-12μmLWIR带中的动态光谱可调性。拟议的检测平台铺平了新一代未冷却的基于石墨烯的LWIR光电探测器,用于诸如分子传感,医学诊断,军事,安全和空间之类的广泛应用。关键字:红外探测器,石墨烯,二维材料,狄拉克等离子,光热效应