伯克利地质年代学中心和加州大学伯克利分校的舒斯特实验室 实验室描述 PI Shuster 负责 BGC 和 UCB 的实验室设施,用于样品制备、特性分析、(U-Th)/He 和 4 He/3 He 热年代学以及宇宙成因核素分析。 设施包括: BGC 惰性气体实验室。BGC 惰性气体实验室设有: • 惰性气体热年代学实验室 (NGTL)。该设施设计用于 4 He/3 He 热年代学、40 Ar/39 Ar 热年代学、通过控制热提取表征惰性气体扩散动力学以及宇宙成因 21 Ne 和 3 He 测量。该实验室还可用作传统的 (U-Th)/He 实验室。NGTL 包括 (i) 经过校准的双目显微镜和摄像系统,用于制备和测量样品的几何形状; (ii) 超高真空 NG 提取系统,包括三个带有光束传输光学器件和高温计和热电偶反馈控制的二极管激光系统,在 175-1500 o C 之间提供优于 +/- 10 o C 的精度和准确度;(iii) 气体净化系统,包括 Janis 低温系统和校准标准和气体加标系统;(iv) Pfeiffer 气源四极杆质谱仪,用于使用同位素稀释测量 NG 丰度;(v) 可调收集狭缝 MAP-215-50 扇区场 NG 质谱仪,用于高精度同位素比测量;(vi) 激光烧蚀 ICPMS 实验室(如下所述),用于测量 U 和 Th。NGTL 的初始建设部分由 NSF MRI 拨款 EAR-0618219 资助,授予 PI Shuster,并继续获得 Ann 和 Gordon Getty 基金会的支持。 NGTL 实验室包括第二个可调收集狭缝 MAP-215-50 NG 质谱仪,该质谱仪配备自动稀有气体提取和低温纯化系统,可与上面描述的 NGTL 激光加热系统耦合,并针对宇宙成因 3 He 和 21 Ne 测量进行了优化,最初由 NSF I&F 计划拨款 EAR-1054079 资助给 PI Shuster。BGC U 子实验室。BGC U 子实验室包括一个带有过滤空气供应的温控仪器室,其中设有 LA-ICPMS 设备;一个相邻的 HEPA 过滤清洁化学实验室;以及专用的样品制备设施。• 激光烧蚀 ICPMS 实验室。该设施用于通过同位素稀释和激光烧蚀测量磷灰石和/或锆石中的 U 和 Th 浓度,以进行 (U-Th)/He 测定和 4 He/3 He 热年代学。该设备还用于通过同位素稀释法测量石英中的铀和钍,这对于解释宇宙成因 21 Ne 测量结果必不可少。它由 Thermo Fisher Scientific Neptune Plus 多接收器 ICPMS 组成,配有九个法拉第探测器,带有计算机切换的 10 11 和 10 12 欧姆输入电阻、具有离子计数和高丰度灵敏度离子能量过滤器的离散倍增电极电子倍增器、大容量干式接口泵以及高性能样品和撇取锥。该实验室最初由 NSF MRI 拨款 EAR-0930054 资助给 PI W. Sharp 和 D. Shuster,并继续获得 Ann and Gordon Getty 基金会的支持。UCB 和 BGC 的湿化学实验室。BGC 和附近的加州大学伯克利分校地球和行星科学系的 PI Shuster 可以使用专用的湿化学实验室空间。这些实验室包括标准通风柜(适用于矿物分离、酸蚀样品制备和常规(即非空白限制)石英中的 Be 提取)和一个过滤空气层流下流罩(适用于低空白 Be 提取化学)。
1. 引言 在现代交通系统中,减阻对于减少能源消耗和污染物排放至关重要。正如 Cheng 等人 [3] 所述,交通运输部门占能源预算的 25%,却排放了全球 10% 以上的温室气体。表面摩擦是造成阻力的一个重要因素,对于商用飞机来说,其总阻力中高达 55% 是由表面摩擦引起的。在过去的几年中,人们提出了各种技术来通过实验和数值方法减少表面摩擦阻力(例如 [5]、[10] 和 [14])。大多数减阻策略都侧重于壁面附近的相干结构,例如准流向涡旋 (QSV) 和速度条纹,这些结构与表面摩擦阻力密切相关。诸如喷出和扫掠等众所周知的事件都与 QSV 密切相关 [13]。最近的研究表明,可以使用相对简单的方案来控制近壁面湍流事件,从而减少表面摩擦。Choi 等人 [4] 对湍流通道流中的主动控制进行了直接数值模拟。他们发现,通过施加吹气和吸气来抵消壁面法向速度,可实现高达 25% 的壁面摩擦减少。此外,他们观察到当检测平面靠近壁面(y + ≈ 10 )时,阻力会减小,而当检测平面距离壁面较远时,阻力会显著增加。Rebbeck 和 Choi [12] 对实时对抗控制进行了风洞实验。他们研究了当使用壁面法向射流对单个扫掠事件施加对抗控制时,边界层的近壁面湍流结构如何变化。他们的结果表明,扬声器执行器产生的壁面法向射流可以有效阻挡扫掠事件期间高速流体的向壁运动。这表明,对壁面湍流进行反向控制可以减少湍流边界层的表层摩擦阻力。最近,Yu 等人 [15] 开发了一种人工智能开环控制系统,用于操纵平板上的湍流边界层,以减少摩擦阻力。边界层的特征是基于动量厚度的雷诺数 Reθ ,等于 1450。该系统由合成射流、壁线传感器和用于无监督学习最优控制律的遗传算法组成。每个合成射流(从矩形流向狭缝中喷出)的速度、频率和驱动相位都可以独立控制。通过使用
气溶胶沉积 (AD) 可通过气流中的粒子沉积形成致密涂层;在 AD 中,气溶胶通过收敛-发散喷嘴,以超音速粒子速度促进惯性粒子撞击所需基材。与热喷涂方法不同,AD 可以在接近室温下应用;与冷喷涂不同,在 AD 中,气溶胶通常在喷嘴上游处于大气压下。尽管之前已成功演示了 AD,但与 AD 系统中粒子运动相关的许多方面仍不太清楚。在这项工作中,我们模拟了具有平面基材的狭缝型收敛-发散喷嘴的典型 AD 工作条件下的可压缩流场分布和粒子轨迹。在检查流体流动分布时,我们发现速度和压力分布以及冲击结构对喷嘴的上游和下游工作压力很敏感。这些最终会影响粒子撞击速度。重要的是,在 AD 中,粒子阻力状态是动态的;粒子克努森数和马赫数都可以相差几个数量级。为了辅助粒子轨迹模拟,我们训练了一个神经网络,根据现有实验数据、理论极限和新的直接模拟蒙特卡罗 (DMSC) 结果预测粒子上的阻力。基于神经网络的阻力定律取决于马赫数和克努森数,与 DSMC 模拟数据相比,其一致性比预先存在的相关性更好。借助该定律,粒子轨迹模拟结果表明,对于给定的粒子密度,存在一个最佳粒子直径,以最大化粒子撞击速度。我们还发现,在 AD 中,粒子会经历与尺寸相关的惯性聚焦,即存在一个特定的粒子直径,其中粒子沉积线宽最小。小于此直径的粒子聚焦不足,大于此直径的粒子聚焦过度,因此在两种情况下都有较大的沉积线宽。使用轨迹模拟,我们还开发了一个框架,可用于评估喷嘴上游任何气溶胶尺寸分布函数的位置相关质量、动量和动能通量到沉积基质的通量。结果表明,对于实验室可达到的典型气溶胶浓度,动能通量可以接近在具有相变的对流传热中通常观察到的量级,因此 AD 中的平动能到热能的传递可能是形成致密涂层的关键因素。关键词:气溶胶沉积;收敛-发散喷嘴,惯性聚焦;惯性撞击;直接模拟蒙特卡罗
膜型超材料,[17] 最近的研究表明,将液体与固体结构结合起来可以极大地促进可重构性。最近展示了一种被动可重构亥姆霍兹共振器,其中填充了不同体积的水来调节其自由腔空间。 [18] 但是,为了主动调整液体嵌入超材料设计,我们需要主动微流体技术来在芯片上控制液体的流动性。文献中存在许多主动微流体控制机制 [19],如光电润湿、电泳和表面声波。这些可用于以受控方式移动微尺度液滴,并已被用于各种应用,如芯片实验室、[20] 打印、[21] 光流体透镜 [22] 和声流体。 [23] 然而,声流体领域 [24] 迄今为止仅关注使用施加声场来操纵液滴 [25,26],而不是反之亦然。此外,由于尺寸大、吞吐量低、体积大以及整合主动控制机制所需的材料成本高昂,制造超紧凑可调超材料设计面临着制造挑战。在这里,我们提出并开发了一种新型超紧凑元结构,我们称之为超材料,它具有利用微流体的主动驱动机制,这将具有重要实际意义并促进微流体声学超材料 (MAM) 的新方法。在本文中,我们设计、制造并展示了一种液滴集成超材料,其可调性源自一种基于数字微流体的主动液滴操纵技术,称为电介质电润湿 (EWOD)。 [27–29] 我们利用微机电 (MEMS) 技术实现了对深亚波长狭缝(尺寸为长度 = 0.5 λ (L)、宽度 = 0.06 λ 和高度 = 0.02 λ )的动态控制,以操纵超声波(40 kHz)。例如,在文献中很少见到在频率 20.9 kHz(λ 表示声音的波长)时约为 λ /650 的超薄深亚波长超材料,其中通过在超表面上镂空图案化来剪纸任意图案。[30] 已报道的大部分作品(如范围在微米到毫米级的超声波超透镜 [31])都是“被动的”,但这里我们提出了一种新型的主动可调谐深亚波长超薄超材料(厚度为 200 微米,高达 λ /44),据我们所知,与以前的研究相比创下了纪录。基于 MEMS 的 MAM 设计铺平了道路