人机交互 (HCI) 策略基于不同的设备和技术传达人类思维和机器智能。大多数人机交互策略都假设身体状况正常,这限制了残障用户的可访问性。某些产品(例如盲文键盘)对特定残障人士来说很好用。然而,一种可以忽略用户身体状况的更通用的人机交互策略将增强这些工具对残疾人的可访问性。在这里,我们报告了一种利用人体摩擦电 (TEHB) 进行人机交互的人机交互策略。人体的许多部位都可以产生 TEHB,从而消除了身体功能障碍带来的障碍。这种人机交互方法已用于文本输入、图形输入和模仿鼠标功能。在深度学习的帮助下,直接从手写获得的文本输入的准确率约为 98.4%。我们的研究结果为人机交互提供了一种新方法,并证明了多种交互模式的可行性。
钰创科技股份有限公司董事长James 曾多次应邀在大型会议上发言,在消费电子、机械和半导体公司拥有出色的商业领导能力和成功经验。James 曾领导该公司的企业战略和业务规划,并成功获得多个案例和机会。他曾帮助 eYs3D 获得 ARM IoT Fund、WI Harper 和其他领先投资公司的投资。
摘要 — 意识障碍 (DOC) 患者的行为诊断具有挑战性,而且容易出错。因此,人们加大了对基于脑电图和事件相关电位 (ERP) 的床边评估的开发力度,这些评估对支持意识觉知的神经因素更为敏感。然而,使用这些技术对残留意识进行个体检测尚不成熟。在这里,我们假设大脑对听觉刺激的被动反应的跨状态相似性(定义为健康和受损意识状态之间的相似性)可以指示个体 DOC 患者的意识水平。为此,我们引入了基于全局场时频表示的判别相似性分析 (GFTFR-DSA)。该方法使用 GFTFR 作为脑电图特征,量化个体患者与我们构建的健康模板之间的平均跨状态相似性指数。我们证明,与传统的脑电图特征(例如时间波形)相比,所提出的 GFTFR 特征在 34 个健康对照中表现出更好的组内一致性。其次,我们观察到,最低意识状态患者(MCS,40 名患者)的 GFTFR 相似度指数明显高于无反应性觉醒综合征患者(UWS,54 名患者),这支持了我们的假设。最后,将线性支持向量机分类器应用于单个 MCS/UWS 分类,该模型实现了平衡的准确度和 0.77 的 F1 得分。总体而言,我们的研究结果表明,结合判别性和可解释性标记以及自动机器学习算法,对于 DOC 患者的鉴别诊断是有效的。重要的是,这种方法可以
IVIS频谱成像系统是在麻醉下构建现场受试者的,为其具有集成的麻醉递送系统。这包括用户可访问的大部分物理组件零件。仪器的机电控制是通过计算机上的软件操作的。有关软件控件操作的详细信息,请参阅SOP。
3.18.1 Introduction to MEMS Atomic Clocks 572 3.18.1.1 Introduction 572 3.18.1.2 Vapor Cell Atomic Clocks 573 3.18.1.3 Coherent Population Trapping 575 3.18.1.4 CPT in Small Vapor Cells 577 3.18.2 Design and Fabrication 578 3.18.2.1 Introduction 578 3.18.2.2 Physics Package 579 3.18.2.2.1简介579 3.18.2.2.2垂直腔表面发射激光580 3.18.2.2.3蒸汽单元581 3.18.2.2.4光学584 3.18.2.2.2.5加热585 3.18.2.2.2.2.2.2.2.2.2.2.2.2.2.2 CSAC 588 3.18.2.3.3其他MEMS共振器588 3.18.2.4控制电子设备590 3.18.2.5包装591 3.18.3性能592 3.18.3.1简介592 3.18.3.2频率稳定592 3.18.3.2.2-2.2.2.2.2.2.3.3.1.2.5频率592 3.18.1.长期频率稳定性595 3.18.3.3功耗596 3.18.3.4尺寸597 3.18.4高级技术597 3.18.4.1简介597 3.18.4.2共振对比597 3.18.4.4.4.4 Introduction 600 3.18.5.2 End-State CSAC 600 3.18.5.3 Nanomechanically Regulated CSAC 601 3.18.5.4 CPT Maser 601 3.18.5.5 Raman Oscillator 601 3.18.5.6 Ramsey-Type CPT Interrogation 602 3.18.5.7 N-Resonances 602 3.18.5.8 Others 603 3.18.6 Other MEMS Atomic Sensors 603参考文献605
lora [21]通过近似于每个权重矩阵的变化ΔW作为两个低级矩阵的乘积来近似基本模型的重量更新。这将所需的参数从d 2降低至2 rd d时,其中d和r分别为重量大小和等级。大多数洛拉变体都致力于解决矩阵分解的固有低级别概念,包括loha(lo w-rank ha darmard)[42],lokr(lo w-st rank kr onecker)[42]和lotr(lo lotr(lo w t t t osor r ank ank)[5]。我们在第2节中讨论了更多相关工作。但是,我们发现这些变体可以在我们的框架中很好地统一 - 超级洛拉 - 具有不同的超参数,如表1所示。我们提出的超级LORA框架如图1所示,这也产生了一些新的变体:Lonkr(Lo w-Rank n -split kr onecker)和Lorta(Lo w- r w- r ank ank t ensor a a Paintoration)。此外,我们将三个扩展选项介绍:1)在应用Lora变体之前,将∆ W重塑ΔW; 2)将所有∆ w分为任意数量的组,这会破坏不同权重的∆ w的边界; 3)通过带有固定参数的投影层F(·)将更少的可训练参数投射到更大的权重中。相应地,超级卢比提供了更多的灵活性和扩展功能,并由表2中列出的一组超参数控制。我们的贡献包括:
– 节点使用均匀(0,t u )分布从连续争用窗口中随机抽取起始时间,其中 t u 是窗口的持续时间。– 起始时间被转换到 TDMA 时间结构上,以避免在动态数据时隙之外传输。– 如果在起始时间之前接收到传入传输,则取消争用并在信道可用时重新启动
摘要 目的比较基于机器学习理论的6种模型的预测效果,为预测2型糖尿病(T2DM)风险提供方法学参考。 研究地点与对象 本研究基于2016—2018年东莞市居民慢性病危险因素监测数据。各监测点采用多阶段整群随机抽样的方法,最终抽取4157人。在初始人群中剔除缺失数据超过20%的个体,最终纳入4106人。采用设计K最近邻算法和合成少数过抽样技术对数据进行处理。采用单因素分析对变量进行初步筛选。采用10倍交叉验证对部分模型参数进行优化。以准确度、精确度、召回率和受试者工作特征曲线下面积(AUC)评价模型的预测效果,采用Delong检验分析各模型AUC值的差异。结果平衡数据后样本量增加至8013例,其中2型糖尿病患者4023例,对照组3990例。六种模型的比较结果显示,反向传播神经网络模型的预测效果最好,准确率、准确度、召回率分别为93.7%、94.6%、92.8%,AUC值为0.977,其次是logistic模型、支持向量机模型、CART决策树模型和C4.5决策树模型。深度神经网络的预测性能最差,准确率、准确度、召回率分别为84.5%、86.1%、82.9%,AUC值为0.845。结论本研究构建了6类2型糖尿病风险预测模型,并基于各项指标比较了这6种模型的预测效果,结果显示,基于所选数据集的反向传播神经网络的预测效果最好。
图 2 显示了大脑的各个部分及其功能。正如大自然赋予我们 2 只眼睛、2 只手、2 只耳朵、2 个肺、2 个肾、2 只脚……,我们的大脑也由两个半球组成 - 左半球和右半球(见图 3)。两个半球通过胼胝体连接,胼胝体是一束超过 2 亿根神经纤维,使它们之间能够进行交流(见图 3)。有趣的是,大脑的左侧控制身体的右侧,而身体的右侧控制身体的左侧。左脑被称为优势半球,与逻辑、口头和书面语言有关 - 其表达、阅读、写作和理解(有关两个半球的更详细专业化,见图 3)。右脑是直觉的、艺术的。