Loading...
机构名称:
¥ 1.0

摘要 — 意识​​障碍 (DOC) 患者的行为诊断具有挑战性,而且容易出错。因此,人们加大了对基于脑电图和事件相关电位 (ERP) 的床边评估的开发力度,这些评估对支持意识觉知的神经因素更为敏感。然而,使用这些技术对残留意识进行个体检测尚不成熟。在这里,我们假设大脑对听觉刺激的被动反应的跨状态相似性(定义为健康和受损意识状态之间的相似性)可以指示个体 DOC 患者的意识水平。为此,我们引入了基于全局场时频表示的判别相似性分析 (GFTFR-DSA)。该方法使用 GFTFR 作为脑电图特征,量化个体患者与我们构建的健康模板之间的平均跨状态相似性指数。我们证明,与传统的脑电图特征(例如时间波形)相比,所提出的 GFTFR 特征在 34 个健康对照中表现出更好的组内一致性。其次,我们观察到,最低意识状态患者(MCS,40 名患者)的 GFTFR 相似度指数明显高于无反应性觉醒综合征患者(UWS,54 名患者),这支持了我们的假设。最后,将线性支持向量机分类器应用于单个 MCS/UWS 分类,该模型实现了平衡的准确度和 0.77 的 F1 得分。总体而言,我们的研究结果表明,结合判别性和可解释性标记以及自动机器学习算法,对于 DOC 患者的鉴别诊断是有效的。重要的是,这种方法可以

全局场时频表示... - 欧文实验室

全局场时频表示... - 欧文实验室PDF文件第1页

全局场时频表示... - 欧文实验室PDF文件第2页

全局场时频表示... - 欧文实验室PDF文件第3页

全局场时频表示... - 欧文实验室PDF文件第4页

全局场时频表示... - 欧文实验室PDF文件第5页

相关文件推荐

2011 年
¥43.0
2011 年
¥43.0