• 在 Caris Life Sciences(亚利桑那州凤凰城)使用下一代测序对 CRC(N = 15,285)、EJC(N = 3,276)和 GA(N = 2,420)肿瘤进行 DNA(592 个基因或全外显子组)和 RNA(全转录组)检测。• 通过 IHC 评估 PD-L1+ 表达(22C3:TPS ≥ 1% [CRC] 或 28-8:≥ 2+,≥ 80% [EJC,GA])。• 使用 IHC 和 NGS 组合评估缺陷错配修复/微卫星不稳定性高(-MSI,稳定:-MSS)。• GUCY2C -高(H)和 -低(L)(每百万转录本,TPM)分别针对每个分子定义的亚型定义为上四分位数和下四分位数。• 通过 QuantiSEQ 估计细胞浸润。适当时应用 Mann-Whitney U 和 χ2/Fisher 精确检验(p < .05,根据多重比较进行调整)。• 从保险索赔中获得现实世界的总生存期 (OS) 和自开始 ICI 以来的生存期,并计算分子定义的患者的 Kaplan-Meier 估计值。
利用 TALEN® 技术,我们开发了一种基因编辑过程,通过同源性定向修复在造血干细胞和祖细胞 (HSPC) 中实现高效的基因校正和基因插入。我们首先评估了非病毒线性单链 DNA (LssDNA) 供体模板递送策略与更常用的病毒 (AAV) 递送的潜力。这两种策略均导致基因在体外插入 HSPC。然后,我们比较了 LssDNA 与环化单链 DNA (CssDNA) 的使用情况。我们发现环化显著提高了敲入 (KI) 效率,相对于其线性对应物。有趣的是,KI 的这种增加分别与环状和线性 ssDNA 编辑细胞中更高的存活率和更低的敲除 (KO) 相关。总体而言,我们表明,与 TALEN® 基因编辑相关的非病毒 ssDNA 传递可在长期重新植入的造血干细胞中实现高水平的基因校正。ssDNA 的环化有可能进一步提高 KI 的速率,而不会影响细胞活力和适应性,从而促进下一代细胞疗法的发展。
利用工程酶进行催化为活性药物的生产提供了更有效的途径。然而,生物催化在早期药物发现活动中的潜力仍未得到充分开发。在这项研究中,我们开发了一种生物催化策略,通过苯并噻吩和相关杂环的分子内环丙烷化来构建富含 sp 3 的多环化合物。我们进化出了两种具有互补区域异构体选择性的卡宾转移酶,以催化在杂环的 C2 或 C3 位上带有重氮酯基的苯并噻吩底物的立体选择性环化。我们通过结合晶体学和计算分析阐明了这些反应的详细机制。利用这些见解,可以将其中一种生物催化剂的底物范围扩大到包括以前不反应的底物,这凸显了整合进化和理性策略来开发用于新自然转化的酶的价值。这里获得的分子支架具有三维和立体化学复杂性以及“三元律”特性的组合,这使得它们对于基于片段的药物发现活动具有很高的价值。
摘要:动力学不对称是描述非平衡化学系统的关键参数:它表明在稳态,非平衡条件下化学反应网络的方向性。到目前为止,仅在具有单个周期的网络中评估了动力学不对称性。在这里,我们使用了合并的理论和数值方法研究了多周期系统中的动力学不对称性。受到最新实验发展的启发,我们选择了一个隔间化的氧化还原控制网络作为模型系统。我们报告了多周期网络动力学不对称性的一般分析表达,并为当前系统指定它,该系统允许预测关键参数如何影响方向性。我们确定隔室化可以实现自主能量棘轮机制,并由系统的热力学决定。动力学模拟证实了分析结果,并说明了扩散,化学和电化学过程之间的相互作用。提出的治疗是一般的,因为相同的程序可用于评估其他多周期网络中的动力学不对称,从而促进了跨域的终极过程的实现。
在 MD 轨迹中,分子重新定向,使得噻吩环位于血红素环 C 上方(1a 中为环 B),并且甲氧基的极性氧原子指向溶剂(图 6c)。相反,使用 6Me 取代的底物(2j)的 MD 模拟显示苯并噻吩环深深嵌入酶口袋中并远离溶剂(图 6c),其构象与底物 1a 和 5-OMe 底物不同。通过实验,酶对这些底物的活性遵循 2f(5-OMe)> 1a> 2j(6-Me)的顺序(图 3a)。由于该趋势与 MD 模拟确定的相应 TS 中苯并噻吩环对溶剂的暴露程度相关,我们假设底物
类似的小分子CGMP是GC活性的产物,是动物中的另一个关键第二信使(16)。通过审查的序列分析,我们发现了一个相对保守的GC基序(17),与先前表征的AC基序(15)相邻,在TIR1/AFB的C末端区域(图1a)。为了测试TIR1/AFB生长素受体的潜在GC活性,我们使用了从SF9昆虫细胞中纯化的HIS-GFP-FLAG-TIR1,GST-AFB1以及GST-AFB5蛋白纯化了30
a 印度阿姆劳蒂 Mardi 路 Rajendra Gode 药学院药物化学系;b 沙特阿拉伯利雅得伊玛目穆罕默德伊本沙特伊斯兰大学理学院化学系;c 沙特阿拉伯莫哈伊尔阿西尔哈立德国王大学科学与艺术学院化学系;d 马来西亚双威城双威大学医学与生命科学学院;e 伊拉克埃尔比勒 Tishk 国际大学药学院药物化学系;f 沙特阿拉伯阿尔哈吉 Prince Sattam Bin Abdulaziz 大学药学院药理学与毒理学系;g 印度兰契 Birla 理工学院药物科学与技术系;h 沙特阿拉伯利雅得 AlMaarefa 大学医学院基础医学系
摘要:我们分析了 FDA 批准的大环药物、临床候选药物和最近的文献,以了解大环化合物在药物发现中的应用。目前的药物主要用于传染病和肿瘤学,而肿瘤学是临床候选药物的主要适应症,在文献中,大多数大环药物与难以结合药物的靶标结合。天然产物提供了 80-90% 的药物和临床候选药物,而 ChEMBL 中的大环化合物结构不太复杂。大环化合物通常位于 5 规则化学空间之外,但 30-40% 的药物和临床候选药物是口服生物可利用的。简单的双描述符模型,即 HBD ≤7 与 MW < 1000 Da 或 cLogP > 2.5 的组合,将口服药物与肠外药物区分开来,可用作设计中的过滤器。我们认为,构象分析的最新突破和来自天然产物的灵感将进一步改善大环化合物的从头设计。■ 介绍
摘要:进行了比较定量结构 - 保留关系(QSRR)研究,以预测使用分子描述符的多环芳烃(PAHS)的保留时间。分子描述符是由软件龙生成的,并用于构建QSRR模型。还考虑了色谱参数的影响,例如流量,温度和梯度时间。使用人工神经网络(ANN)和部分最小二乘回归(PLS-R)来研究保留时间(以响应为响应)和预测因子之间的相关性。通过遗传算法选择了六个描述符,以开发ANN模型:分子量(MW);环描述符类型NCIR和NR10;径向分布功能RDF090U和RDF030M;以及3D-MORSE的描述符MOR07U。PLS-R模型中最重要的描述符是MW,RDF110U,MOR20U,MOR26U和MOR30U;边缘邻接Indice SM09_AEA(DM);基于3D矩阵的描述符spposa_rg;和逍遥布H7U。构建模型用于预测校准集中未包含的三个分析物的保留。考虑到预测集的统计参数RMSE(分别为PLS-R和ANN模型的0.433和0.077),该研究证实了与色谱参数相关的QSRR模型可以通过非线性方法更好地描述。
简单摘要:尽管最近扩大了急性髓样白血病(AML)治疗景观,但抗药性机制和复发性疾病仍然构成严重的障碍,以实现大多数患者的策划。考虑到高室内和肠内异质性,预计破坏性治疗方法将为这种未满足的需求提供临床解决方案。在一项硅药物发现计划中确定了一个新的溶酶体和线粒体靶向化合物的家族,该家族在相关的临床前模型中特异性地消除了白血病和体内的白血病,并通过诱导线粒体损伤和无肢体损伤和脱骨和同时脱落的效果。此外,这些化合物在巨大的癌细胞系中有效,因为它们的作用机理靶向了常见的肿瘤特征。这些化合物具有足够的药理特性,使它们具有有希望的AML和无关肿瘤的候选药物,并支持其进一步的临床发育。