缩写:AADC,芳香族 L-氨基酸脱羧酶;AAV,腺相关病毒;ALS,肌萎缩侧索硬化症;APOE,载脂蛋白 E;ASO,反义寡核苷酸;ATXN2,共济失调蛋白 2;BBB,血脑屏障;BSCB,血脊髓屏障;CDKL5,细胞周期蛋白依赖性激酶样 5;CNS,中枢神经系统;CRISPR,成簇的规律间隔的短回文重复序列;CSF,脑脊液;DRPLA,齿状红核苍白球路易体萎缩;FTD,额颞痴呆;FUS,聚焦超声;FXTAS,脆性 X 相关震颤/共济失调综合征;GABA,γ-氨基丁酸;GAD,谷氨酸脱羧酶;GAG,糖胺聚糖; GAN,巨轴突性神经病;GBA,葡萄糖脑苷脂酶;GCH,三磷酸鸟苷环化水解酶;GDNF,胶质细胞源性神经营养因子;ICis,脑池内;ICV,脑室内;IPa,脑实质内;IT,鞘内(腰椎);IV,静脉内;LacNAc,硫酸化N-乙酰乳糖胺;MAO,单胺氧化酶;miRNA,微小RNA;MLD,异染性脑白质营养不良;MPS,粘多糖贮积症;MRgFUS,磁共振成像引导聚焦超声;MRI,磁共振成像;MSA,多系统萎缩;NCL,神经元蜡样脂褐素沉积症;NGF,神经生长因子;NTN,神经营养素;PDHD,丙酮酸脱氢酶缺乏症;Put,壳核; rAAV,重组腺相关病毒;RNAi,RNA 干扰;siRNA,短干扰 RNA,小干扰 RNA;SMA,脊髓性肌萎缩;SMARD,脊髓性肌萎缩伴呼吸窘迫;SNc,黑质致密部;SOD1,超氧化物歧化酶 1;Str,纹状体;TDP-43,TAR DNA 结合蛋白 43;TERT,端粒酶逆转录酶;TH,酪氨酸羟化酶;Th,丘脑;VTA,腹侧被盖区;ZFN,锌指核酸酶。 * 通讯作者:德克萨斯大学达拉斯分校,800 West Campbell Road, EW31, Richardson, TX 75080, USA。电子邮箱地址:Zhenpeng.Qin@utdallas.edu (Z. Qin)。
摘要:我们报告了Sungeidines的基因组引导的发现,Sungeidines是一类具有独特结构特征的微生物二级代谢产物。尽管与天代型的进化关系,但士ggidines是由生物合成基因簇(BGC)产生的,这些基因簇(BGC)与已知的Enediyne BGC表现出明显的差异。我们的研究表明,从两个术链组装出的sungeidines是与分流型型式链型链条不同的。生物合成还会引入促进脱水反应的独特激活硫代转移酶。基因的丧失,包括推定的环氧酶基因,可能是降亚途径与其他规范的eNe-diyne途径的分歧的主要原因。这些发现揭示了Enediyne途径的令人惊讶的演变能力,并为在Sungeidine Biosynthe-sis中引人入胜的酶促步骤奠定了基础。天然存在的endiynes是一个微生物二级代谢产物家族,其中包含一个高度不同的1,5-diyne-3-ene核心,这些核心嵌入了十或九元的骨骨架中。1-6在过去的三十年中,Enediyne天然产品因其未经原理的分子体系结构和有效的DNA损害生物活性而受到了极大的关注。在存在化学触发的情况下,1,5-diyne-3-Ene核心通过Bergman或Myers-Saito环化机制重新排列为反应性的Diradical。7-9,活性的Diradical可以从DNA的Deox- yribose主链中抽象氢原子,从而导致铬som-somal DNA的裂解。10-13基因组开采显示了多种神秘的Enediyne BGC,14-16表明,Enediyne天然产物的结构性含量仍然是充分的。在这里,我们报告了Sungeidines的发现,Sungeidines是由生物合成途径进化产生的一系列代谢产物,与产生二代型的途径相关。大太蛋白的特征是融合到蒽醌moi-ety的十个元素核心。5,15,17-19 Sungeidines和Dynemicins之间的显着结构差异信号的分歧5,15,17-19 Sungeidines和Dynemicins之间的显着结构差异信号
该学生的总体目标是创建量身定制的超稳定膜纳米盘,以加速结构表征并生成粘合剂到整体膜蛋白。自行车疗法具有独特的技术:自行车肽将短线性肽限制在使用中央化学支架的稳定的双循环结构中。该结构赋予了强大的类似药物的特性,包括高亲和力结合和快速组织渗透,以对针对小分子或抗体疗法的靶标产生治疗剂。自行车最初是通过针对固定目标筛选数十亿个变体来选择的。此选择是可溶性蛋白或具有较大结构性外域的膜蛋白的常规方法,但对于多跨膜(Multitm)膜蛋白(尤其是离子通道和GPCR)来说,仍然是一个重大挑战。MULTITM蛋白更难表达和纯化,并且通常会失去洗涤剂中的天然构象。MULTITM蛋白代表了自行车的一些最重要的目标,因此Howarth在蛋白质技术和蛋白质工程方面的专业知识可以促进这一挑战。Howarth组创建了Spytag,这是一种与间谍蛋白质混合后形成自发异肽键的肽。每个成分由常规20氨基酸组成,并且在不同条件下反应是快速而特异的(Keeble/Howarth PNAS 2019,Keeble和Howarth,Chem SCI 2020)。纳米盘是小蛋白,可以封装整体膜蛋白,形成一个含有天然膜脂质的环。生长抑素受体。纳米散发是在与清洁剂溶解度更接近细胞环境的环境中研究溶解的膜蛋白的变化性。然而,纳米盘面临着不稳定和缺乏受控组装的挑战,这些挑战抑制了它们对许多应用的使用,包括按噬菌体显示筛选粘合剂,对粘合剂的亲和力确定和冷冻剂以了解和优化自行车结合。将Spytag/Spycatcher技术与纳米盘结合起来,可以实现纳米盘的分子内环化,增强多性蛋白质的稳定性,并生成具有可调尺寸范围的Spyring-Nanodiscs,可适应于不同的膜蛋白和复合物。在这里,我们将首先验证E. coli表达的Spyring-nanodiscs从HEK 293S细胞中捕获,该单元具有感兴趣的Multitm靶标的自行车,其文献具有隔离和已知配体的先例,例如自行车和已知配体的特征是通过生物物理或生化测定法具有亲和力和特异性。APO和配体蛋白质结构也将通过冷冻研究进行研究。然后,我们将使用异肽交联和基于结构的设计采用蛋白质工程,合并
需要特定的c c类型的转换类型,这些转换不是天然发生的。5为了利用这些过程中的巨大酶良好的益处,已经设计了人工酶来产生新的催化反应性。6 - 8个促酶,从而产生基本的酶,然后可能会受到定向进化的能力,以实现通常与酶催化相关的高活性和选择性。9,10然而,尽管有明显的进展,但大多数人促酶的催化效率尚未与天然酶相媲美。11迄今为止,使用人工酶的大多数定向进化运动仅针对催化中心近距离的残留物,以直接影响其化学环境。越来越清楚的是,就像天然酶一样,整个蛋白质的12个结构合作也需要与人工酶促进酶进行催化。例如,刘易斯和同事观察到在模型环丙烷化反应中,在引入脱离活性位点的突变后,由人工hodios的模型环化反应提高了对映选择性。13 o s,远端突变的引入产生由蛋白质的先天结构动力学决定的细微结构重排,该结构动力学已在天然酶的进化中被逐渐构成。18,19是Hilvert等人设计的KEMP消除酶HG3.17的局部示例。14,15那些可以间接地通过调节结构动力学的催化活性的残基称为动力学的远端位点或热点。16,17针对定向演化算法中这些热点的16,17可以将构象动力归为催化生产构象,从而导致高度效率高的设计师酶。能够通过开发具有催化能力的构象合奏的速率加速度提高10 8倍。20当前,它们的鉴定阳离子o cen依赖于广泛的分子动力学(MD)模拟,这对工作的吞吐量构成了显着的限制。21尽管最近已经描述了基于机器的新策略并保持了大大减轻计算费用的希望,但对大型培训数据集的需求阻碍了他们在鲜为人知的系统中的应用。为了确定远端突变和远距离网络在人工酶中的作用,我们以23,24的lactocococococcal多药耐药性调节剂(LMRR)为示例,是探讨了以较广泛的新型到Nature Adectivitivitivities量身定制的混杂蛋白SCA效率的示例。该蛋白质属于padr遗传因素的PADR家族,并调节乳酸乳酸菌中LMR操纵子的表达。lMRR的特征是独特的构象thimational质量和结构可塑性25,26,在其大型恐惧孔中引起了宽阔的配体滥交。然后将这些基本酶定向进化,从而导致专业酶显着增加活性和(对映)的选择性。引入各种人工催化部分,金属复合物,27个非典型氨基酸(NCAA),28甚至两者均为29个具有多种新型催化性活性的endow LMRR。但是,迄今为止,迄今为止,定向进化仅集中在孔内的残基上,以优化新创建的活性位点的结构。在这里,我们展示了如何通过利用LMRR的构象动力学来进一步增加这些设计师酶之一的活性。
隶属关系:(1) 西班牙巴塞罗那费雷尔医疗事务部。(2) 西班牙巴塞罗那费雷尔临床开发部。(3) 西班牙巴塞罗那费雷尔研发组合部。参考文献:(1) Alquezar C、Arya S、Kao AW。Tau 翻译后修饰:Tau 功能、降解和聚集的动态转化因子。Front Neurol。2021 年 1 月 7 日;11:595532。doi: 10.3389/fneur.2020.595532。PMID:33488497;PMCID:PMC7817643。(2) Alteen MG、Tan HY、Vocadlo DJ。监测和调节 O-GlcNA- 环化:O-GlcNAc 加工酶的测定和抑制剂。Curr Opin Struct Biol。 2021 年 6 月;68:157-165。doi:10.1016/j.sbi.2020.12.008。电子版 2021 年 1 月 31 日。PMID:33535148。(3) Pratt MR、Vocadlo DJ。了解和利用 O-GlcNAc 在神经退行性疾病中的作用。J Biol Chem。2023 年 12 月;299(12):105411。doi:10.1016/j。jbc.2023.105411。电子版 2023 年 10 月 31 日。PMID:37918804;PMCID:PMC10687168。 (4) Selnick HG、Hess JF、Tang C、Liu K、Schachter JB、Ballard JE、Marcus J、Klein DJ、Wang X、Pearson M、Savage MJ、Kaul R、Li TS、Vocadlo DJ、Zhou Y、Zhu Y、Mu C、Wang Y、Wei Z、Bai C、Duffy JL、McEachern EJ。发现 MK-8719(一种有效的 O-GlcNAcase 抑制剂)可作为 Tauopathies 的潜在治疗药物。J Med Chem。2019 年 11 月 27 日;62(22):10062-10097。doi:10.1021/acs.jmedchem.9b01090。电子版 2019 年 9 月 29 日。PMID:31487175。(5) Yuzwa SA、Shan X、Macauley MS 等人。增加 O-GlcNAc 可减缓神经退化并使 tau 稳定以防止聚集。Nat Chem Biol. 2012;8(4):393-399。2012 年 2 月 26 日发布。doi:10.1038/nchembio.797。(6) Yuzwa SA、Shan X、Macauley MS、Clark T、Skorobogatko Y、Vosseller K、Vocadlo DJ。增加 O-GlcNAc 可减缓神经退化并使 tau 稳定以防止聚集。Nat Chem Biol. 2012 年 2 月 26 日;8(4):393-9。doi: 10.1038/nchembio.797。 PMID: 22366723。(7) Permanne B、Sand A、Ousson S、Nény M、Hantson J、Schubert R、Wiessner C、Quattropani A、Beher D。O-GlcNAcase 抑制剂 ASN90 是治疗 Tau 和 α-突触核蛋白病的多模式候选药物。ACS Chem Neurosci。2022 年 4 月 20 日;13(8):1296-1314。doi: 10.1021/acschemneuro.2c00057。电子版 2022 年 3 月 31 日。PMID:35357812;PMCID:PMC9026285。(8) Ryan M、Quattropani A、Abd-Elaziz K、den Daas I、Schneider M、Ousson S、Neny M、Sand A 等人。在健康志愿者中开展的 O-glcnacase 抑制剂 ASN120290 作为进行性核上性麻痹和相关 tauopathies 的新疗法的 1 期研究。Alzheimers Dement。2018 年,第 14 卷,第 7 期,第 251 页。(9) 一项评估 FNP-223 对减缓进行性核上性麻痹 (PSP) 进展的疗效、安全性和药代动力学的研究。ClinicalTrials.gov [Internet]。网址:https://www.clinicaltrials.gov/study/NCT06355531。访问日期:2024 年 4 月 9 日。