在世界某些地区,使用生物质进行家庭取暖十分普遍。生物质是一种可再生能源 (RES),由于其为二氧化碳中性能源,因此被视为气候友好型燃料。然而,住宅区木质生物质的燃烧是环境空气污染的主要因素,主要是细颗粒物。这是一个严重的健康问题,需要加以解决才能改善空气质量。使用烟囱测量的现有排放数据计算出的空气质量颗粒物浓度之间也存在差距,这一点需要加以解决。大气中有机颗粒物的浓度高于报告的排放因子预期值,但不同国家登记的排放因子之间也存在差距,这强调了各国需要制定类似的标准,或者至少需要更多关于排放数据的信息。
在世界某些地区,使用生物质进行家庭取暖很常见。生物质是一种可再生能源 (RES),由于它是 CO 2 中性能源,因此被认为是气候友好型燃料。然而,住宅部门木质生物质的燃烧是环境空气污染的主要因素,主要是细颗粒物。这是一个严重的健康问题,需要解决以改善空气质量。使用可用的排放数据计算出的空气质量颗粒浓度(在烟囱处测量)之间也存在差距,需要解决这个问题。大气中有机颗粒的浓度高于报告的排放因子的预期,但不同国家登记的排放因子之间也存在差距,强调需要为各个国家制定类似的标准,或者至少需要更多关于排放数据的信息。
目前,人们正在研究从废气或环境空气中捕获并随后利用(碳捕获与利用,CCU)的方法。由于大约一半的二氧化碳排放量是分散排放,而不是相对纯净的点源排放,因此远程直接空气捕获(DAC)和随后的转化(无需昂贵的气态二氧化碳运输)是最有潜力和灵活性的方案之一。3 为了安全有效地分散利用捕获的碳,在低温下直接加氢二氧化碳可以降低成本并防止潜在危害。已发现钌是加氢二氧化碳最活跃的催化剂,并且对甲烷的选择性很高。4 人们普遍认为,钌基催化剂的载体材料对反应过程中的活性和稳定性具有显著影响,这就是为什么已经进行了许多研究来确定理想的载体。5 – 7 然而,这些研究通常侧重于高反应温度。虽然也有在低温条件下进行的研究,但 8 – 10
过滤后的压缩空气通过阀门 A 进入在线干燥剂填充的干燥塔 1。上流干燥使干燥剂能够从气流中去除水分。清洁、干燥的压缩空气通过 E 排出,供给空气系统。塔 2 上的阀门 B 关闭,通过消声器将空气减压到大气中。阀门 D 和 F 打开,加热器打开。高效鼓风机吸入环境空气并将其送入加热器。环境气流通过阀门 F 并向下流过塔 2 中的潮湿干燥剂,在离开阀门 D 之前收集水蒸气。一旦干燥剂完全解吸,加热器就会关闭。阀门 D 关闭,塔 2 重新加压。一旦能源管理系统控制器确定塔 1 已完全饱和,阀门 B 将打开,塔 2 将在线干燥气流,阀门 A 将关闭。操作将切换,塔 1 将再生。
背景 2010 年 6 月 2 日,美国环境保护署 (US EPA) 公布了二氧化硫 (SO2) 国家环境空气质量标准 (NAAQS) 修订版。美国环保署以 75 ppb 的新短期 1 小时标准取代了 24 小时和年度标准。新的 1 小时 SO2 标准于 2010 年 6 月 22 日发布 (75 FR 35520),并于 2010 年 8 月 23 日生效。该标准以 1 小时日最大浓度年第 99 分位数的 3 年平均值为基础。2013 年 8 月 15 日,美国环保署根据监测到的违规区域,公布了 (78 FR 47191) 全国范围内 1 小时 SO2 标准初始第一轮 SO2 不达标区域划定2015 年 3 月 2 日,美国加州北区地方法院接受了美国环保局与塞拉俱乐部和自然资源保护委员会之间达成的一项协议,作为一项可执行命令,以解决有关完成指定截止日期的诉讼。如美国环保局 2015 年 3 月 20 日发布的备忘录《2010 年主要二氧化硫国家环境空气质量标准区域指定更新指南》中所述,法院命令指示美国环保局分三步完成剩余的指定:第二轮于 2016 年 7 月 2 日前完成;第三轮指定截止日期为 2017 年 12 月 31 日,第四轮指定截止日期为 2020 年 12 月 31 日。作为第二轮指定的一部分,美国环保署确定了新监测到的违反标准区域,或包含 2012 年排放量超过 16,000 吨 SO2 或排放量超过 2,600 吨 SO2 且排放率至少为 0.45 磅 SO2/MMBtu 的固定污染源的区域。美国环保署认定俄亥俄州有两家设施满足一个或多个排放阈值:詹姆斯 M. 加文将军电厂和 WH Zimmer 发电站。2016 年 7 月 12 日,美国环保署公布了 (81 FR 45039) 这些源区的第二轮最终指定名单。俄亥俄州于 2017 年 1 月 13 日提交了第三轮指定的建议。美国环保署于 2018 年 1 月 9 日最终确定了这些区域的指定(83 FR 1098)。第三轮和第四轮指定根据美国环保署 2015 年 8 月 21 日针对 2010 年 1 小时二氧化硫 (SO 2 ) 主要国家环境空气质量标准 (NAAQS) 的数据要求规则;最终规则 [80 FR 51052](以下简称 DRR)制定,该规则要求通过建模或监测对实际排放量超过 2,000 吨/年 (TPY) 的 SO 2 源进行表征。DRR 还建立了持续的数据审查要求,包括对于以实际 SO 2 排放量建模作为无法分类/达标指定基础的区域,每年审查排放数据并提交报告,建议是否需要由于排放量增加而更新建模。年度排放审查应于每年 7 月 1 日前提交给美国环保署第 5 区,从指定生效日期后的日历年开始。本文件是俄亥俄州 2022 年年度排放审查和是否需要更新模型的建议。
碳捕获,利用和存储(CCUS)是实现美国脱碳能量未来的重要工具通过两党基础设施法(BIL),能源部(DOE)清洁能源示范办公室(OCED)已大约35亿美元用于投资进一步推进CCUS技术与私营部门合作的部署。OCED的目标是消除危险的关键障碍,以广泛的商业升降机,如DOE的碳管理途径(碳管理升降机)报告所述。oced的碳管理投资组合包括直接从环境空气中删除CO 2的直接空气碳捕获(DAC)和点源碳捕获(涉及在其源中捕获CO 2排放量),通常是通过将CO 2与工业设施和发电厂的漏气分开的。本报告描述了它可以在催化和加速电力部门的Point Source CCUS商业升空的途径中所扮演的项目的作用。
许多研究表明,激光纹理化之后,新处理过的金属表面由于存在微/纳米结构而呈现亲水或超亲水状态[3–5]。当激光纹理化表面较长时间暴露在环境空气中时,可以观察到润湿性从超亲水性转变为超疏水性[5–10]。因此,激光纹理化的金属表面在环境条件下储存时可实现超疏水性。不同金属的转化时间不同。例如,经纳秒激光纹理化的铜或黄铜需要大约 11–14 天才能变为超疏水[11,12]。Jagdheesh 等人[13]报道,激光烧蚀铝的润湿性转化需要大约 40 天。而飞秒激光烧蚀不锈钢的润湿性变化比其他金属需要更长的时间(52–60 天)[14,15]。
摘要。利用飞秒光纤激光器在环境空气中实现了微孔钻孔和切割。首先,研究了透明(玻璃)和不透明(金属和组织)材料中的微孔钻孔。利用光学和扫描电子显微镜对孔的形状和形貌进行了表征和评估。演示了长宽比为 8 ∶ 1 的无碎片、圆度好且无热损伤的微孔。还演示了在硬组织和软组织中无裂纹或附带热损伤的微孔钻孔。然后,研究了不同材料的沟槽微加工和切割,并研究了激光参数对沟槽性能的影响。获得了笔直、干净的沟槽边缘,没有热损伤。© 作者。由 SPIE 根据知识共享署名 3.0 未移植许可证发布。分发或复制本作品的全部或部分内容需要完全署名原始出版物,包括其 DOI。 [DOI:10.1117/1.OE .53.5.051513]
然而,溶液处理的 SnO 2 需要在约 (150 – 180 C) 下进行后烧结处理。22,23 因为在无氧环境中对化学计量平衡的胶体 SnO 2 进行退火,在隔氧手套箱中进行后烧结可能会导致 SnO 2 中出现氧空位或缺陷,所以这种烧结处理通常在环境空气中进行,这不可避免地会导致氧气吸附 24,25 在纳米晶体 SnO 2 薄膜上。在退火过程中,这些周围的氧分子从物理吸附转化为化学吸附,通过有效地从 SnO 2 导带中提取本征电子,在表面形成 O 2 。26 因此,在钙钛矿和 SnO 2 界面之间形成了能带弯曲和电子屏障,导致 SnO 2 的电导率显著降低。 27 由于这些吸附的 O2 带负电荷,钙钛矿层中光生电子向 SnO2 的传输会受到更多界面电荷的阻碍
•几项研究报道了环境空气污染物(例如O 3,S0 2,No 2,Co,pm 2.5,PM 10,PM 10)和自发流产之间的季节性变化之间的相关性。•居住在大批量高速公路附近,会大大增加出生体重的风险。•在妊娠的第二个三个月,尤其是20至27周之间的CO,No 2,PM 2.5和PM 10的高度接触与期限前出生的几率增加有关。•全球关于末期出生的数据表明,全世界的270万或18%可以归因于孕产妇暴露于细颗粒物中,在南/东亚,北非/中东/中东和西撒哈拉以南非洲的负担最高。•在分娩前三周内最多三周的野火与低出生体重的风险增加有关。此外,在妊娠中期第二学期,暴露于野火细颗粒物质与早期出生前出生的风险升高,这可能是由于炎症和压力引起的。