• 4 月份美国 PGP 合约经历了大幅回调,跌至 220 美元/吨,结束了为期六个月的价格上涨。4 月份的结算价涨跌不一,大多数买家接受 220 美元/吨的降价,而其他买家则能够确保价格下降超过 300 美元/吨。 • 陶氏位于德克萨斯州弗里波特的 750,000 公吨/年的 PDH 装置于 4 月 27 日发生意外停机。该装置于 5 月 3 日重新启动,停机期间对现货价格的影响微乎其微。 • 一家美国墨西哥湾沿岸的环氧丙烷生产商目前正在停机维护,另一家计划在 5 月中旬进行检修。停产对丙烯现货价格几乎没有影响。 • 美国丙烯市场将在第三季度继续受到供应限制,Enterprise 位于德克萨斯州蒙特贝尔维尤的 750,000 吨/年的 PDH-2 装置的丙烷脱氢 (PDH) 工厂将于 6 月开始检修。 • 4 月份聚丙烯 (PP) 合约价格与当月 PGP 结算价一致。4 月份 PP 需求依然低迷,因为买家大多持观望态度,预计 5-6 月份价格将进一步回落。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
1 汽车电子、聚合物与包装工程技术,罗伯特·博世有限公司,72770 罗伊特林根,德国;erick.franieck@de.bosch.com(EF);martin.fleischmann@de.bosch.com(MF)2 柏林工业大学电气工程与计算机科学学院,13355 柏林,德国 3 系统集成与互连技术,弗劳恩霍夫 IZM,10623 柏林,德国;ole.hoelck@izm.fraunhofer.de 4 罗伊特林根大学应用化学学院过程分析与技术中心(PA&T),Alteburgstrasse 150,72762 罗伊特林根,德国; larysa.kutuzova@Reutlingen-University.de 5 罗伊特林根研究所 (RRI), 罗伊特林根大学, Alteburgstrasse 150, 72762 Reutlingen, 德国 * 通讯地址:andreas.kandelbauer@reutlingen-university.de;电话:+49-7121-271-2009
摘要:通过纳米颗粒修改聚合物基质可能是提高纤维增强聚合物(FRP)复合材料性能的有前途的方法。有机溶剂通常用于分散聚合物基质中的石墨烯(GO)。在这项研究中,开发了一种绿色,易于且有效的方法来制备环氧/GO纳米复合材料。原位聚合用于合成纳米复合材料,消除了对有机溶剂和表面活性剂的需求。通过仅加载0.6 wt%进入环氧树脂,杨氏模量,拉伸强度和韧性分别提高了38%,46%和143%。分裂分析表明,纯树脂的平滑断裂表面变为该纳米复合材料中高度强化的断裂表面。塑性变形,裂纹固定和挠度有助于改善纳米复合材料的韧性。FTIR的调查表明,酰胺键是由羧酸基团在分散过程中与固化剂中的一些胺基中的反应产生的。
©作者2023。Open Access本文是根据Creative Commons Attribution 4.0 International许可获得许可的,该许可允许以任何媒介或格式使用,共享,适应,分发和复制,只要您对原始作者和来源提供适当的信誉,请提供与创意共享许可证的链接,并指出是否进行了更改。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://创建ivecommons。org/licen ses/by/4。0/。Creative Commons公共领域奉献豁免(http://创建ivecommons。Org/publi cdoma in/Zero/1。0/1。0/)适用于本文中提供的数据,除非在数据信用额度中另有说明。
方法旨在通过实验和有限元分析 (FEA) 研究确定旋转圆盘的纤维增强复合材料的机械行为。首先,对两个不同系列进行 FEA 分析,载荷条件为旋转速度 600 RPM,外部摩擦力 10 N。其中,利用 FEA 工具对七种不同的复合材料样品进行结构特性分析,例如环氧-碳-UD-预浸料-SiC、环氧-碳-UD-湿法-SiC、环氧-碳-编织-预浸料-SiC、环氧-碳-编织-湿法-SiC、环氧-E-玻璃-UD-SiC、环氧-E-玻璃-湿法-SiC 和环氧-S-玻璃-UD-SiC。除这些材料外,还通过 FEA 分析了四种基础材料,以在相同载荷条件下进行比较。其次,进行了实验研究,以调查带有碳化硅 (SiC) 的 FRP 实心盘式制动器转子的适用性,为此,准备了基于碳编织基陶瓷复合材料的 ASTM 标准样品销盘装置。还在两种方法的位移之间执行了验证。最后,这项工作证实了碳纤维陶瓷基复合材料是抵抗旋转动力载荷的良好材料,因此这项工作还强烈建议在制造飞机和汽车盘式制动器等旋转部件时实施 CCMC。
摘要基于插入电极材料的锂离子电池的能量密度已达到其上限,这使得满足对高能存储系统需求不断增长的挑战。基于硫,有机硫化物等转化反应的电极材料,涉及破裂和化学键改革的氧气可以提供更高的特定能力和能量密度。此外,它们通常由丰富的元素组成,使其可再生。尽管他们具有上述利益,但对于实际应用而言,他们面临许多挑战。例如,硫和分子有机硫化物的循环产物可以溶于液体电解质,从而导致穿梭效应和大量容量损失。氧的排放产物为Li 2 O 2,这可能导致电解质的高电荷过电势和分解。在这篇评论中,我们概述了当前改善锂硫,锂,有机硫化物和锂氧气电池的性能的策略。首先,我们总结了克服硫和有机硫化物阴极面临的问题的努力,以及提高有机硫化物能力的策略。然后,我们介绍了锂氧气电池中催化剂的最新研究进度。最后,我们总结并提供了电极材料转换的前景。
。cc-by 4.0国际许可(未经Peer Review尚未获得认证)是作者/资助者,他已授予Biorxiv的许可证,以永久显示预印本。它是制作
心力衰竭(HF)是心血管发病率和死亡率的主要原因,随着患病率的增加,全球医疗系统面临HF大流行[1-3]。尽管现代药物疗法,包括血管紧张素受体 - 抑制剂抑制剂(ARNI)和 - 葡萄糖糖共转移蛋白-2抑制剂(SGLT2I),但患者的预后,尤其是患有晚期HF的人的预后仍然很差[4]。eicosanoids先前在基本的心血管和肾脏研究中进行了研究。这些细胞色素P-450(CYP) - 脱发 - 烯烃的代谢产物(AA),尤其是环氧酸 - 辛酸 - 辛酸 - 辛酸酸(EET),重要的是,重要的是,通过其vasodilital and natriuration and natriuration和Natriurater效应,有助于调节car骨和肾脏系统。此外,在临床前研究中,它们发挥了器官保护作用[5-7]。在生理条件下,EET由内皮细胞(作为内皮衍生的超极化因子 - EDHF)和表现出自分泌和旁分泌作用而产生。eets被可溶性环氧水解酶(SEH)转化为生物学上的活性较低的二羟基乙酸酸酯(DHETS)[5,8],并主要排出