图 1:航空电子结构的简单分解,重点介绍选定的导航系统 航空电子(航空和电子相结合的术语)应用由于其操作环境而具有非常苛刻和严格的要求。飞机航空电子组件的故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除电传操纵电子控制飞行系统外,上述分类对大多数现代飞机(包括民用和军用飞机)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨针对航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。讨论了生成和分析测量解决方案;特别是,哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
1 GE 检测技术公司,俄亥俄州辛辛那提;2 GE 检测技术公司,德国阿伦斯堡 摘要:航空航天业长期以来一直希望以非破坏性方式确定材料和结构的质量和完整性。在飞机产品和部件的整个生命周期中,X 射线检测技术发挥着重要作用,需求不断增加。对低成本方法和解决方案的需求不断推动着对 X 射线检测的需求,这些方法和解决方案具有更高的可靠性、灵敏度、用户友好性和高操作速度,并且适用于新材料和结构。本演讲将总结航空航天业的射线照相和射线透视 X 射线检测技术的现状,同时展示 X 射线检测解决方案如何满足这些要求。此外,还将确定新兴的检测挑战并回顾新兴的 X 射线检测技术。简介:现代飞机,无论是商用飞机还是军用飞机,都是为在长生命周期内有效运行而设计的。安全和性能要求要求在飞机的整个生命周期内对飞行关键部件和组件进行广泛的检查。临界缺陷尺寸的典型标准通常由经验验证的缺陷增长模型和循环疲劳期间的影响确定。这既适用于制造过程中进行的检查,也适用于定期检查
图 1:航空电子设备结构的简单分解,重点介绍选定的导航系统 航空电子设备(航空和电子相结合的术语)应用由于其运行环境而具有非常苛刻和严格的要求。飞机航空电子组件发生故障可能会立即危及生命。因此,必须密切监控和测量航空电子设备的各个方面,以发现安装和维修缺陷。 如图 1 所示,航空电子设备大致分为导航、通信、传感器、显示器和数据记录器等类别。除了电传电子控制飞行系统外,上述分类对大多数现代飞机(民用和军用)仍然有效。本应用说明的重点是重点介绍罗德与施瓦茨用于航空无线电导航信号的各种测试解决方案。此类信号包括甚高频全向无线电测距 (VOR)、仪表着陆系统 - 下滑道 (ILS-GS)、仪表着陆系统 - 定位器 (ILS-LOC) 和标记信标 (MB)。民用测距设备 (DME) 和军用战术空中导航 (TACAN) 已在应用说明 1GP74 中介绍,因此本文不再深入探讨。本文将讨论生成和分析测量解决方案;特别是哪种解决方案最能满足不同航空客户(无论是校准实验室、机场当局、生产还是研发)的需求。
空战司令部 (ACC) 依靠空战机动仪表 (ACMI) 系统进行空对空作战训练和大规模部队部署飞行汇报。尽管这些系统可以非常有效地增强训练效果,但它们非常昂贵,并且通常需要在受限空域范围内飞行。这些因素阻碍了全舰队每天实施 ACMI 训练。基本的 ACMI 系统确定飞机位置和性能数据,并将数据传输到地面监测站进行记录、显示和汇报。早期的喷气式战斗机需要特殊的外部组件或“吊舱”来计算数据并将其传输到定制的计算机化汇报设施。现代飞机不再有这种限制,而且低成本的个人计算机现在提供的计算和图形显示功能足以进行 ACMI 汇报。当前的航空电子系统计算所有必要的数据,并在飞机航空电子系统总线上报告所需的参数。监控和记录这些机载数据将减少对特殊范围的要求,消除吊舱要求,并允许在战斗机中队通常可用的常规计算机设备上进行汇报和演示。内部数据还提供吊舱系统无法提供的航空电子参数。这些数据代表了飞行汇报的巨大未开发资源。内部系统提供的最大潜在贡献可能涉及战斗任务汇报能力。由于外部吊舱占用武器站,机组人员极不可能将这些组件带入战斗。内部组件是唯一可以为战斗任务汇报提供 ACMI 功能的替代方案。此外,内部组件保留了飞机的空气动力学和雷达信号特征,这是隐形飞机使用必不可少的功能。这种新的 ACMI 概念将减少对外部吊舱和其他支持设备的需求,并为每个任务提供基本的 ACMI 功能,与当前和计划中的基于吊舱的实施相比,可能节省大量成本。提议的替代方案还可以作为大型部队训练演习的重要补充,因为这些任务可能会继续依赖外部吊舱。在日常任务中提供基本的 ACMI 功能与偶尔的全面演习相结合时可提供显着的协同效应。ACC 目前正在开发新的 ACMI 吊舱和先进的训练系统。该内部解决方案提案以大型演习所需的独特功能换取便利性、易用性和基本 ACMI 功能的日常可用性,同时又不降低实战训练的价值。正在考虑的系统称为联合战术作战训练系统 (JTCTS),它将全球定位系统技术与 ACMI 设备相结合,并提供广泛的新功能。提议的功能包括电子战训练、“无投掷”弹药投掷训练以及将模拟器和虚拟训练系统与实弹任务连接起来的能力。对于此应用,基于吊舱的系统可能是近期的最佳解决方案。但是,可以为所有现代飞机提供基本的 ACMI 功能
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2]。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等。随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足飞行安全对高精度、高速度、高可靠性测量的要求。因此有必要对现有的测量技术进行分析和总结,提出新的测量技术。本文在分析现有方法、总结发展趋势的基础上,提出了一种新的柔性测量方法来满足上述需求。
如前所述 [ 20 ],实现安全和安保之间一致交织的挑战是相当多样和复杂的。安全和安保方面的最新进展表明,风险分析为实现全面协调提供了指导。然而,对于许多领域,例如航空领域,安全性是一个相当新的关注点,而飞机开发几十年来主要以安全标准为指导。所提到的差异以及安全性在许多方面仍处于发展阶段的事实,对指定和应用将安全和安保协同工程作为一个统一过程进行的方法施加了限制。在本文中,我们介绍了基于模型的方法、框架和工具的开发进展,这些方法、框架和工具可用于在安全标准和目标的指导下进行安全风险分析。除其他外,该方法依赖于最先进的技术诀窍,如 ED202、ED203 (EUROCAE) 1 等标准,以及 CAPEC 和 CWE (MITRE) 2 等开放知识库。这些来源是集成的,允许实例化攻击、漏洞和架构的模式,这是半自动化分析的关键要素。提出并实施了一种基于规则的算法,用于探索架构中的潜在攻击路径。最后通过分析飞行控制系统中可能破坏现代飞机安全性的组合攻击故障路径来证明该方法。该框架和工具支持在设计上寻求安全性,旨在促进案例研究的重用并为可重复性和结果比较奠定基础。
1.2 特色 本课程有以下特色: (a) 本课程为香港四年制学位课程,旨在培养学生成为航空业工程师。(b) 部分科目由理大学者与业界专业人士共同教授,让学生获得航空业第一手资料。(c) 课程可安排暑期实习、技术参观及实地经验分享,以加强学生在业界的学习和工作经验。在本课程中,学生在第一年获得广泛的科学和工程知识,为他们在高年级学习航空工程相关科目打下坚实基础。在第二年,他们将获得飞机和航空系统的基本知识,并拥有飞机部件制造过程的实践经验。在第三年,学生将开始学习更高级的科目,例如飞机设计、安全、控制和推进系统。在最后一年(即正常学习模式的第四年),学生有机会集中学习所选的课程,以获得航空工程特定领域的专业知识。可能的学习课程包括 (a) 飞机维修工程、(b) 飞行器自主、(c) 航空服务工程和 (d) 飞行员地面理论。工业中心 (IC) 培训旨在通过研讨会和项目培训为学生提供现代飞机设计的基本动手工程技能和实践。学生可在暑假参加实习计划,以获得真实的工作经验并提高他们将来的竞争力。可能会为学生提供以工业为基础的最后一年项目,以提高他们解决实际问题的技能和知识。1.3 最低入学要求
(a) 香港独有的四年制学位课程,旨在培养学生成为航空业的工程师。 (b) 部分科目由理大学者和业界专业人士共同教授,让学生获得有关航空业的第一手资料。 (c) 课程可安排暑期实习、技术参观和现场经验分享,以加强学生在业界的学习和工作经验。 在本课程中,学生在第一年获得广泛的科学和工程知识,为他们在高年级学习航空工程相关科目打下坚实的基础。在第二年,他们将获得飞机和航空系统的基本知识,并拥有飞机部件制造过程的实际经验。在第三年,学生将开始学习更高级的科目,例如飞机设计、安全、控制和推进系统。在最后一年(即正常学习模式的第四年),他们有机会专注于所选的流派学习,以获得航空工程特定领域的专业知识。可选的学习方向包括 (a) 飞机维修工程、(b) 飞行器自主性、(c) 航空服务工程和 (d) 飞行员地面理论。工业中心 (IC) 培训旨在通过研讨会和项目培训为学生提供现代飞机设计的基本动手工程技能和实践。学生可以在暑假参加实习计划,以获得真实的工作经验并提高他们将来的竞争力。可能会为学生提供以工业为基础的最后一年项目,以提高他们解决实际问题的技能和知识。 1.3 最低入学要求
1.2 特色 本课程有以下特色: (a) 本港独有的四年制学位课程,旨在培育学生成为航空业工程师。(b) 部分科目由理大学者与业界专业人士合教,让学生掌握航空业第一手资料。(c) 课程可安排暑期实习、技术参观及实地经验分享,以加强学生在业界的学习及工作经验。在本课程中,学生在第一年获得广泛的科学及工程知识,为高年级学习航空工程相关科目打下坚实基础。在第二年,学生将获得飞机及航空系统的基本知识,并亲身体验飞机零件制造过程。在第三年,学生将开始学习更高级的科目,例如飞机设计、安全、控制及推进系统等。在最后一年(即正常学习模式的第四年),学生有机会集中学习所选的课程,以获得航空工程特定领域的专业知识。可能的学习课程包括 (a) 飞机维修工程、(b) 飞行器自主、(c) 航空服务工程和 (d) 飞行员地面理论。工业中心 (IC) 培训旨在通过研讨会和项目培训为学生提供现代飞机设计的基本动手工程技能和实践。学生可在暑假参加实习计划,以获得真实的工作经验并提高他们将来的竞争力。可能会为学生提供以工业为基础的最后一年项目,以提高他们解决实际问题的技能和知识。1.3 最低入学要求
(a) 在香港开设四年制学位课程,培养学生成为航空业工程师。 (b) 部分科目由理大学者和业界专业人士共同教授,让学生掌握航空业的第一手资料。 (c) 可安排暑期实习、技术参观和现场经验分享,以加强学生在业界的学习和工作经验。 在本课程中,学生在第一年获得广泛的科学和工程知识,为他们在高年级学习航空工程相关科目打下坚实的基础。在第二年,他们将获得飞机和航空系统的基本知识,并亲身体验飞机部件的制造过程。在第三年,学生将开始学习更高级的科目,例如飞机设计、安全、控制和推进系统。在最后一年(即正常学习模式的第四年),他们有机会专注于所选的流派,以获得航空工程特定领域的专业知识。学生还可以自由选择不同流派中的四门选修科目,以扩充他们对航空工程的知识。可选的学习方向包括 (a) 航空服务工程、(b) 航空工程、(c) 飞机维修工程和 (d) 飞行员地面理论简介。工业中心 (IC) 培训旨在通过研讨会和项目培训为学生提供现代飞机设计的基本动手工程技能和实践。学生可以在暑假参加实习计划,以获得真实的工作经验并提高他们未来的竞争力。可能会为学生提供以工业为基础的最后一年项目,以提高他们解决实际问题的技能和知识。 1.3 最低入学要求