第一单元:现代物理学。 1.1.迈克尔逊-莫雷实验、狭义相对论、时间膨胀、长度收缩、洛伦兹变换、速度总和、相对论质量、质量和能量。 1.2.光电效应、光的量子理论、X射线、康普顿效应、电子对产生。 1.3.德布罗意波、粒子衍射、不确定性原理、波粒二象性。 1.4.原子模型、阿尔法粒子散射、卢瑟福散射公式、电子轨道、原子光谱、玻尔原子、对应原理。 1.5.波动方程,薛定谔方程,应用:盒子中的粒子,谐振子。 1.6.氢原子的薛定谔方程、量子数、选择规则。 1.7.中子,稳定原子核,结合能,液滴模型,层模型。 1.8.放射性、放射性系列、衰变、阿尔法、贝塔和伽马。第 2 单元:量子。 2.2 狄拉克代数和符号。 2.2 量子力学。 2.3 量子计算。 2.4 量子通信。
为什么尝试了解宇宙的起源很有趣?我们今天观察到的一切,包括我们的存在,都源于那个事件。虽然我们仍然没有一个理论可以让我们描述起源本身,但对宇宙极早期的研究涉及分析当今最成功的两大物理理论广义相对论和量子物理学之间接口的理想领域。但它也是一个我们拥有大量观测数据来测试我们的理论思想的领域。量子物理学的两位创始人尼尔斯·玻尔和维尔纳·海森堡分享了一些可以用这些话来描述的思想:量子物理学告诉我们,被观察者和观察者之间存在一条界线,因此科学应该局限于被观察到的事物。我们必须放弃一个完整、客观和现实的世界理论。本文将围绕这些想法展开,并总结今天,从最近的作品来看,我们能够尝试通过宇宙学(至少是部分地)挑战它们,寻求早期宇宙的量子描述。
Springer Link 摘要:根据胡塞尔的说法,epochè(或判断悬置)必须是未完成的。它要一步一步地进行,从而定义各种“还原”层。在现象学中,至少可以区分出两个这样的层次:生活世界还原和先验还原。量子物理学诞生于生活世界还原的一种特殊形式:根据海森堡的说法,还原为可观测量,根据玻尔的说法,还原为实验装置的经典性质。但 QBism 挑战了哥本哈根解释所倡导的这种有限版本的现象学还原。QBists 声称量子态是“对指针读数体验的期望”,而不是对指针位置的期望。他们关注生活体验,而不仅仅是宏观变量,这相当于进行先验还原,而不是停留在生活世界还原的相对肤浅的层面。我将表明,量子物理学确实为我们提供了几个理由,让我们可以深入到现象学还原的最深层次,甚至可能比标准的 QBist 观点更进一步:不仅还原为经验或“纯粹意识”,而且还还原为“活生生的现在”。
1 Energieinstitut,Johannes Kepler University,Altenberger Straße69,4040 Linz,Austria,奥地利2巴伐利亚研究联盟,Prinzregentenstraße52,80538,德国慕尼黑80538; rumohr@bayfor.org 3慕尼黑技术大学机械工程系,玻尔茨曼斯特拉斯特(Boltzmannstraße)15,85748德国Garching; Sebastian.fendt@tum.de 4机械工程系,加拿大QC G1V 0A6的Qu bec Universitial Engineering系; louis.gosselin@gmc.ulaval.ca 5能源部,坎皮纳斯大学坎皮纳斯大学机械工程学院,巴西Campinas CP 6122; gilberto@iei-brasil.org或jannuzzi@fem.unicamp.br(g.m.j。); stellamssousa@gmail.com(S.M.S.S.)6国际能源倡议,AV。 JoséRochabomfim 214,Campinas CEP:13080-900,巴西; rodolfo@iei-brasil.org 7 Greencape,南非Roeland Street,开普敦8001,南非; reshmi@green-cape.co.za *通信:goers@energieinstitut-linz.at6国际能源倡议,AV。JoséRochabomfim 214,Campinas CEP:13080-900,巴西; rodolfo@iei-brasil.org 7 Greencape,南非Roeland Street,开普敦8001,南非; reshmi@green-cape.co.za *通信:goers@energieinstitut-linz.at
量子力学是一个美丽而迷人的理论,它经历了断断续续的发展,始于 20 世纪 00 年代,始于 20 世纪 20 年代,在 20 世纪 20 年代末逐渐成熟为现在的形式。主要由尼尔斯·玻尔和维尔纳·海森堡提出的关于量子力学含义的一系列观点被称为哥本哈根诠释 [1]。关于哥本哈根诠释到底是什么,并没有明确的历史表述。它是最古老、提出的量子力学诠释之一,其特点可以追溯到 1925 年至 1927 年量子力学的发展,而且它仍然是最常教授的诠释之一 [2]。阿尔伯特·爱因斯坦对量子力学持怀疑态度,尤其是它的哥本哈根诠释 [3]。在 1935 年 5 月 15 日出版的《物理评论》上,阿尔伯特·爱因斯坦与高等研究院的两位博士后研究员鲍里斯·波多尔斯基和内森·罗森合作撰写了一篇论文。文章的标题是《物理现实的量子力学描述可以被认为是完整的吗?》[4]。在这项研究中,三位科学家提出了一个今天被称为 EPR 悖论的思想实验,试图表明波函数给出的物理现实的量子力学描述并不完整。
简介:科学计数法和有效数字。不同系统中的单位。矢量:矢量回顾、矢量导数、线积分和面积分、标量的梯度。力学:坐标系。恒定加速度下的运动,牛顿定律及其应用,匀速圆周运动。涡旋运动,摩擦力。功和能量。势能、能量守恒、能源和我们的环境。静电和磁学:库仑定律、高斯定律、导体周围的电场、电介质。磁场。电流上的磁力。半导体物理学:半导体中的能级、空穴概念、本征区域和非本征区域、质量作用定律、P-N 结、晶体管。波和振荡:具有一个自由度的系统的自由振荡、经典波动方程。连续弦的横模。驻波。波的色散关系。光学与激光:光学和激光的基本介绍。衍射光栅。激光器,粒子数反转。谐振腔。量子效率。氦氖激光器、红宝石激光器和二氧化碳激光器。现代物理学:光电效应、康普顿效应、氢原子的玻尔理论、原子光谱、质量减小、德布罗意假设、布拉格定律、电子显微镜、塞曼效应、原子核、质能关系、结合能、核力和基本力、指数衰减和半衰期。
这是推导贝尔不等式所需的唯一假设。λ 表示系统状态,可用任何可能的未来物理理论描述(但假设 x 和 y 与 λ 无关)。从这个意义上说,贝尔不等式远远超出了量子理论:违反贝尔不等式证明没有未来理论能够满足局域性条件 (1)。约翰·克劳泽、阿布纳·希莫尼、迈克尔·霍恩和理查德·霍尔特是 20 世纪 60 年代少数理解这一点的人,他们都想检验贝尔不等式,克劳泽想证明量子理论是错误的,而哈佛大学的年轻学生霍尔特想证明贝尔局域性假设 (1) 是错误的。得益于伯克利现有的设备,克劳泽处于有利地位。事实上,卡尔·科克尔也在 1967 年做过类似的实验,不过是出于其他目的。不幸的是,Kocher,甚至更早的吴建雄,只测量了偏振器平行或正交时的关系,而真正违反贝尔不等式需要中间取向。请注意,假设偏振是一个二维量子系统,即今天所说的量子比特,则可以从假设无信号传输的平行和正交关系中推导出 45° 关系 [1]:E 45 = (E +E )/√ – 2。这在当时并不为人所知。但无论如何,Kocher 和吴测得的可见度低于 50%,而真正违反贝尔不等式需要可见度大于 71%。因此,竞赛开始了。Clauser 先到了一步,证实了量子预测,这出乎他的意料。但随后 Holt 也得到了自己的结果,证实了不等式,这出乎他的意料。不知何故,比分竟然是一比一。当时,这些迷人而有趣的结果几乎没有引起任何人的兴趣,除了一些嬉皮士,他们后来可以声称拯救了物理学[2]。克劳塞与他们进行了长时间的讨论,尽管我最后一次见到他时,他已经变成了一个大声的气候怀疑论者。20世纪70年代,我的朋友阿兰·阿斯派克特在非洲做法国公务员,像我们所有人一样阅读物理学。当他偶然发现贝尔不等式时,他一见钟情:“我想研究它”。回到巴黎后,他前往日内瓦会见约翰·贝尔,并告诉他自己的计划。贝尔回答说:“你有永久职位吗?”事实上,在那个时代,研究贝尔不等式——甚至只是表现出对它的兴趣——都是一种科学自杀。教条认为,玻尔已经解决了所有问题。回想起来,很难理解玻尔被贬低得有多深
摘要 里德堡激子(凝聚态系统中里德堡原子的类似物)是具有大玻尔半径的高度激发的束缚电子空穴态。它们之间的相互作用以及激子与光的耦合可能导致强光学非线性,可用于传感和量子信息处理。在这里,我们通过里德堡阻塞现象以及在 Cu2O 填充微谐振器中形成极化的激子和光子的杂化实现了强有效光子 - 光子相互作用(类克尔光学非线性)。在脉冲共振激发下,由于光子-激子耦合随着激子密度的增加而减少,极化子共振频率被重新正化。理论分析表明,里德堡阻塞在实验观察到的极化子非线性系数缩放中起着重要作用,因为对于高达 n = 7 的主量子数,∝ n 4.4 ± 1.8。首次在极化子系统中研究如此高的主量子数对于实现高里德堡光学非线性至关重要,这为量子光学应用和固态系统中强关联光子(极化子)态的基础研究铺平了道路。
粒子系统的力学:约束;广义坐标;虚拟工作的虚拟位移和原则; D'Alembert的原则;广义力量;拉格朗日;拉格朗日的运动方程;循环坐标;速度依赖性潜力;科里奥利的力量;能量原理;瑞利的耗散功能。动作积分;汉密尔顿的原则; Lagrange的方程式通过变异方法;汉密尔顿的非全面系统原则;对称特性和保护法; Noether的定理。规范结合坐标和动量; Legendre转型;汉密尔顿;汉密尔顿的方程式来自各种原则; Poincare-Cartan的整体不变;固定行动的原则;费马特的原则;规范转型;生成功能;泊松支架;运动方程;动作角度变量;汉密尔顿 - 雅各比方程;汉密尔顿的主要功能;汉密尔顿的特征功能; liouville的定理。普朗克定律,照片电动效应;玻尔理论,康普顿效应; de Broglie波;波粒二元论;最小不确定性产品;需要新的机制;路径积分;量子力学的基本法律和基础; Schrödinger方程;量子状态,可观察和密度矩阵形式主义的入门概念。
摘要。2014 年,在丹麦技术大学国家空间研究所 (DTU-Space) 的技术支持下,使用陆地重力、航空重力、海洋卫星测高和 GOCE 任务第 5 版的最新卫星重力数据,为菲律宾计算了一个初步的大地水准面模型,即菲律宾大地水准面模型 2014 (PGM2014)。计算过程中使用的数字地形模型基于 15 英寸 SRTM 数据。该模型在全球垂直参考系统中计算,然后拟合到 ITRF GNSS/水准测量并用 0.50m 的 RMS 值进行验证。2016 年,使用重新处理和加密的陆地重力数据(从 1261 个点到 2214 个点),将 PGM2014 重新计算为 PGM2016。重新处理的重力数据和 GNSS/水准测量(RMS = 0.040m)中可以看到显著的改进。 2017 年至 2020 年期间,将进一步将城镇中的陆地重力密度增加到 41,000 个点,以完善大地水准面。随着新重力数据的出现,将对新版本的大地水准面进行重新计算。DTU-Space 和哥本哈根大学尼尔斯玻尔研究所开发的 FORTRAN 程序的 GRAVSOFT 系统用于计算菲律宾大地水准面。简介点的垂直坐标(即高度)指的是称为垂直基准的坐标表面。垂直基准的通用选择是大地水准面 - 正高和动态高度的参考表面(Vanicek,1991 年)。它是一个等位水平