摘要:本文致力于研究熔炼的锭、由其轧制的板材以及由此产生的由耐腐蚀316L钢制成的球形粉末,其中添加了0.2wt.%和0.5wt.%的Ag。研究了抗菌性能、微观结构和银浓度分布,并对银含量进行了定性分析。锭的最佳均匀化退火方式为1050 ◦C,持续9小时,从而形成奥氏体组织。结果表明,添加少量银不会影响奥氏体组织的形成,银均匀分布在锭的整个体积中。轧制后的板材也以奥氏体结构为主。银均匀分布在板材的整个体积中。值得注意的是,添加 0.2 wt.% 的银不会影响钢的强度、伸长率和显微硬度,而添加 0.5 wt.% 的银不会显著降低钢的强度,但所有样品均符合 ASTM A240 标准的机械特性。通过 X 射线荧光分析方法确认了耐腐蚀钢样品的定性化学成分。通过能量色散分析法,确定了银在整个粉末颗粒体积上的均匀分布。颗粒呈球形,缺陷数量最少。平板和粉末的抗菌活性研究表明,在添加0.2wt.%和0.5wt.%Ag的2号和3号样品中存在明显的抗菌效果(对野油菜黄单胞菌属细菌、胡萝卜软腐欧文氏菌、边缘假单胞菌、密歇根棒状杆菌)。
摘要 目的——本文旨在开发和测试用于半导体芯片封装的热界面材料 (TIM)。本研究的目标是实现良好的粘附性能(> 5MPa 剪切强度)和低热界面阻(优于 SAC 焊料)。设计/方法/方法——研究了芯片和基板镀金触点之间 TIM 接头的机械和热性能。本研究采用基于银浆的烧结技术。通过剪切力测试和热测量评估性能特性。使用扫描电子显微镜对形成的接头的横截面进行微观结构观察。结果——得出结论,含有几十微米大小的球形银颗粒和几微米大小的片状银颗粒的浆料具有最佳性能。烧结温度为 230°C,烧结过程中对芯片施加 1 MPa 的力,可实现更高的粘附性和最低的热界面阻。原创性/价值——提出了一种基于银膏的新材料,该材料含有悬浮在树脂中的不同大小(从纳米到几十微米)和形状(球形、薄片)的银颗粒混合物。使用烧结技术和银膏在 230°C 下施加压力制备的接头表现出比其他 TIM 材料(如导热油脂、导热凝胶或导热粘合剂)更好的机械和热性能。这些材料可以使电子设备在 200°C 以上的温度下运行,而目前硅基电力电子设备无法做到这一点。
抽象目的 - 本文的目的是开发和测试热界面材料(TIM),以用于组装半导体芯片包装中。这项研究的目标是良好的粘附特性(> 5MPA剪切强度)和低热界面电阻(比SAC焊料更好)。设计/方法/方法 - 研究了芯片和底物的金色接触之间的TIM关节的机械和热性能。烧结技术。通过剪切力测试和热测量评估性能特性。扫描电子显微镜用于形成关节的横截面的显微结构观察。发现 - 得出结论,对于含有数十个微米大小的球形AG颗粒的糊状物的最佳特性是达到的,具有较少微米的粉状Ag颗粒。在230°C下的烧结温度,在烧结过程中施加1 MPa力在芯片上具有更高的粘附性和最低的热界面电阻。独创性/价值 - 基于含有不同大小的Ag颗粒(形成数十个微米)的Ag颗粒的混合物的新材料,并提出了悬浮在树脂中的形状(球形,含量)。在230°C下用施加压力在230°C下制备的关节比其他TIM材料(例如热油脂,热凝胶或热导电粘合剂)表现出更好的机械和热材料。这些材料可以在200°C以上的温度下实现电子设备操作,目前无法用于基于SI的电源电子设备。
近年来,激光添加剂制造(LAM)技术引发了航空航天场的制造革命[1,2]。该技术使用高能激光束融化合金粉末。熔融池是连续形成的,然后迅速形成固体,从而将层沉积到近乎网络的金属成分[3]。钛合金作为重要的结构金属具有高强度,高韧性,低密度和良好耐腐蚀性的优势[4-6]。使用LAM准备钛合金零件有望获得高性能和高质量的关键组件。钛合金零件在LAM过程中经历了高温梯度和高冷却速率,从而导致与传统材料的微观结构差异很大。通常,在先前的β晶粒中存在α相,马氏体α'相或两者的混合物,并且连续α相也沿先前的β晶界嵌入[7-9]。Carroll等。 [10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。 此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。 通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。 Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Carroll等。[10]报告说,晶界α相和先前的β晶粒形态引起了添加性生产的钛合金的各向异性机械性能。此外,具有高强度和低韧性的α相导致形成部分的强度和韧性不匹配[11]。通过热处理过程,可以有效地控制阶段的形态,大小和比例,从而获得良好的机械性能[12-15]。Yadroitsev等。 [16]报告说,在β相过渡温度附近产生了大量球形α相。 Zhao等。Yadroitsev等。[16]报告说,在β相过渡温度附近产生了大量球形α相。Zhao等。Zhao等。[17]通过控制冷却速率,获得了两种类型的篮子编织和菌落结构的微观结构。拉伸结果表明,前者具有更高的强度和韧性,这可能归因于篮子编织结构中的层状α相,从而有效地减少了脱位长度并分散局部应力浓度。但是,由于缺乏在拉伸过程中微观结构演变的观察,变形和失败
3D高斯脱落(3DGS)已成为一种开创性的3D场景表示技术,提供了前所未有的视觉质量和渲染效率。但是,3DGS场景的大量数据卷在流媒体上构成了重大挑战。现有对3DGS的研究主要集中在压缩和提高效率上,忽略了流传输的具体质量。此外,3DG中的球形谐波颜色表示使基于视口的传输分配复杂化。在没有明显质量下降的情况下实现层次结构高斯流也是一个重大挑战。为了应对这些挑战,我们提出了SRBF-Gaussian,这是一种彻底改变传统3DGS格式的新范式。我们的方法基于球形径向基础函数(SRBF)和HSL颜色空间引入了与视口有关的颜色编码,从而可以选择性地传输与视口相关的颜色数据。这在保持视觉质量的同时减少了数据传输。我们实施自适应高斯修剪和传输,以适应当前的视口和网络条件。补充 - 我们开发了连贯的多级高斯表示,以在质量水平之间平稳过渡。我们的系统结合了用户 - 行为感知的流策略,以预测和预先提取相关数据。在云VR方案中,我们的方法表明了实质性改善,PSNR增长了5.63%-14.17%,延迟下降7.61%-59.16%,总体经验质量(QOE)提高了10.45%-30.12%。
摘要 目的——本文旨在开发和测试用于半导体芯片封装的热界面材料 (TIM)。本研究的目标是实现良好的粘附性能(> 5 MPa 剪切强度)和低热界面阻(优于 SAC 焊料)。设计/方法/方法——研究了芯片和基板镀金触点之间 TIM 接头的机械和热性能。本研究采用基于银浆的烧结技术。通过剪切力测试和热测量评估性能特性。使用扫描电子显微镜对形成接头的横截面进行微观结构观察。结果——得出结论,含有几十微米大小的球形银颗粒和几微米大小的片状银颗粒的浆料可实现最佳性能。烧结温度为 230°C,烧结过程中对芯片施加 1 MPa 的力,可实现更高的粘附性和最低的热界面阻。原创性/价值——提出了一种基于银膏的新材料,该材料含有悬浮在树脂中的不同大小(从纳米到几十微米)和形状(球形、薄片)的银颗粒混合物。使用烧结技术和银膏在 230°C 下施加压力制备的接头表现出比其他 TIM 材料(如导热油脂、导热凝胶或导热粘合剂)更好的机械和热性能。这些材料可以使电子设备在 200°C 以上的温度下运行,而目前硅基电力电子设备无法做到这一点。
在本文中,描述了快速,容易且廉价的声学方法用于合成Florfenicol-Chitosan纳米复合材料,并评估其针对大肠杆菌(ATCC35218)的抗细菌作用,Salmonella Typhymurium Typhymurium(ATCC14028)和葡萄球菌。金黄色(ATCC29213)。Florfenicol-Chitosan纳米复合材料的索引,识别和形态特性充分表征。ZETA对Florfenicol -Chitosan纳米复合材料的潜力的结果为-28 mV。Brunner-Emmett-Teller理论(BET)表面积分别为13.3、73.2和103.69 m 2 /g,对于Florfenicol,壳聚糖纳米颗粒和Florfenicol-Chitosan纳米复合材料。拉曼图表证实了佛罗里芬酸 - 壳聚糖纳米复合材料的形成而没有任何污染。透射电子显微镜(TEM),扫描电子显微镜(SEM)和原子力显微镜(AFM)图像和数据示出了球形的球形至佛罗里芬酸纳米粒子的亚球形,尺寸小于75 nm。florfenicol-Chitosan纳米复合材料作为抗细菌剂的显着结果说明了纳米技术的能力。然而,筛选抗菌活性,而由制备的纳米复合材料引起的抑制区为24.7 mm,30.6毫米和29.3毫米,而对大肠杆菌的天然药物的17.7 mm,16 mm,16 mm和18.7毫米,相对于大肠杆菌,Salmonella typhymurium typhymurium typhymurium和葡萄球菌和葡萄球菌aureus aureus aureus aureus aureus aureus aureus。关键字:florfenicol;壳聚糖纳米颗粒; Florfenicol-Chitosan纳米复合材料;抗菌活性;微观技术。
Ti-6Al-4V 粉末的一种制造方法是等离子雾化,可实现优异的球形度和较低的残留元素(如氧),但会带来等离子雾化工艺固有的高密度夹杂物风险。某些气体雾化技术(如 EIGA)也可以实现与粉末床增材机器相当的残留元素水平和可接受的形态。EIGA 采用一种不含陶瓷和钨的工艺,可降低高密度夹杂物的风险。PowderRange Ti64 可使用氩气保护气进行加工。
噬菌体通常被简单地称为噬菌体,是专门针对和感染细菌的病毒。这些微观实体是地球上最丰富的生物,在任何给定的环境中,人数超过10至1的细菌。尽管尺寸很小,但噬菌体对自然世界有重大影响,并且越来越多地探索其在医学,农业和生物技术方面的潜力。它们由包围其遗传物质的蛋白质外套组成。噬菌体的结构可以很大变化,有些具有简单的球形形状,而另一些则具有复杂的,尾巴状的结构,可促进它们对细菌细胞的附着。