人工智能有望像所有领域一样在教育部门中产生根本性的变化。在这项研究中,它的目的是揭示教师对人工智能的看法以及人工智能在教育中作为演员的影响,他们将在教育中使用人工智能。在此框架内,该研究的模式被确定为在安纳托利亚中部一所大学教育学院的不同部门学习的九名教师。用描述性技术分析了半结构化访谈表中收集的数据。的发现表明,教师候选人通过归因于人类的特征来定义人工智能,对人工智能有虚假的概念,并不时将人工智能视为威胁。人工智能将对教育经济产生积极影响,但是教学专业和教育机构的意见面临着灭绝的危险,并且有人建议它将对学习产生负面影响。建议在教育,国家政策,人工智能教育,人工智能课程/课程中的模块和控制中准确有效地使用人工智能。在研究的局限性和发现的框架内,研究人员通过与不同利益相关者对教育的定性和定量研究来增加教育中人工智能的积累;另一方面,向从业人员提出了诸如建立国家政策文件和立法之类的建议。
豆科植物富含蛋白质,是人类和动物的良好食物,具有很高的营养价值。植物生长促进菌(PGPR)是栖息在植物根际土壤中的微生物,有助于保持作物的健康状况、促进其生长并防止疾病的入侵。豆科植物根部产生的根系分泌物可以诱使微生物迁移到根际区域以进行其潜在活动,从而揭示了豆科植物与PGPR(根瘤菌)的共生关系。为了更好地了解豆科植物根际的PGPR,将使用各种基因组序列进行基因组分析,以观察土壤中的微生物群落及其功能。本综述讨论了植物促生根际细菌 (PGPR) 的比较基因组机制,揭示了植物生长促进、磷酸盐溶解、激素产生以及植物发育所需的植物促生基因等活动。本综述揭示了基因组学在改进基因分型数据收集方面的进展。此外,本综述还揭示了植物育种和其他涉及转录组学的分析在生物经济促进中的重要性。这项技术创新提高了作物在不利环境条件下的产量和营养需求。
2024年3月21日 - 由瑞士雀巢研究和新加坡国立大学(NUS Medicine)的雀巢研究领导的研究联盟,最近发现,咖啡,芬格雷克(Fenugreek)以及人体中的天然分子三角琳(Trigonelline)也可以帮助改善肌肉健康和功能。在南安普敦大学的国际合作中,墨尔本大学,德黑兰大学,南阿拉巴马大学,富山大学和哥本哈根大学,这项工作以先前的合作研究为基础,该研究描述了人类萨尔生根的新颖机制。肌肉减少症是衰老过程中发生的细胞变化逐渐削弱体内肌肉并导致肌肉质量,力量和身体独立性降低的加速丧失。肌肉减少症期间的一个重要问题是细胞辅助因子NAD +在衰老过程中下降,而线粒体(我们的细胞中的能量动力)产生的能量较少。研究小组发现,肌肉减少症的老年人中的三角琳的水平较低。在临床前模型中提供该分子导致NAD +水平升高,线粒体活性增加,并有助于在衰老过程中维持肌肉功能。
解开社区组装过程对于完全了解微生物群在农业生态系统中的功能至关重要。然而,许多植物微生物组调查逐渐揭示了随机过程在与强大的宿主过滤效果相结合的内生根微生物群的组装中占主导地位,这是一个重要的问题。解决此类冲突或不一致不仅有助于准确预测根部内生菌菌群的组成和结构及其驱动机制,而且还为确定性和随机过程在根部内生菌群的组装中的相对重要性和作物生产力和营养性质量和营养性质量和营养性质量和营养质量的相对重要性之间提供了重要的指导。在这里,我们提出,分散限制的不适当划分可能是这种不一致的主要原因,可以在分散限制的比例纳入确定性过程之后可以解决。本文解释了这种调整在微生物组和植物宿主之间形成霍比特的框架下的合理性,并提出了沿土壤 - 植物连续体的内生微生物群动态组装模式的潜在理论框架。考虑到根部生物学微生物群的组装是复杂的,我们建议谨慎和逐步验证从确定性过程到中性成分到中性成分再到随机过程,当决定未来分散限制的归因以促进基于可持续性农业的扩展和应用基于可持续性的农业组成模式,以促进对社区的发展和应用。
多功能,可靠和高效的太空作物生产系统可以为机组人员提供营养补充和心理上的好处,同时有可能减少深空勘探任务的食物量。水生植物具有提供大气再生,可食用的生物量生产,生物燃料产生甚至代谢废水处理的巨大潜力,但很少研究作为空间应用的潜在食品作物。μg-lilypond™是一种自主环境控制的浮动植物培养系统,可用于微重力。系统扩展了能够在太空中生长的农作物的类型,以包括水生浮动植物。μg-lilypond™设计为低维护,健壮,体积效率和多功能性。它具有被动水输送,通过营养繁殖的全部生命周期支撑以及近距离的冠层照明。通过NASA STTR I期项目,太空实验室和科罗拉多大学博尔德分校建立了微重力水上水生植物种植的可行性,并开发了植物生长室系统概念。在第二阶段,该团队正在开发一个工程演示单元(EDU),该单元将验证和验证µG-Lilypond™设计。EDU将展示低TRL技术(水运输,养分培养基回收,收获,近距离的par递送和辐射散热),以及支持更高生根植物的可扩展性。最后,将在相关的微重力环境中测试µg-Lilypond™水运输和收获能力。本文回顾了最终的µG-Lilypond™系统概念,性能预测和原型演示。
Engineering Sporopollenin and its Carbon Supply Dr. Matias Kirst 1 , Professor Co‐PI: Teagen Quilichini 2 1: University of Florida, Gainesville, FL, 32610 2: National Research Council Canada, Saskatoon, SK, S7N 0W9 Canada To significantly enhance the capture of carbon in soils, one of the first major challenges is to store it in a form that is stable so that it is not released back into the数百年或千年的气氛。第二个主要挑战是捕获足够大的数量碳,以显着减少大气二氧化碳的量。应对这些挑战的一种新颖方法是将碳直接捕获到植物产品中,这些植物产品几乎是从降解中“不可约束”的,在广泛种植的物种中。孢子囊(通常称为“植物钻石”)就是这样的产品。孢子环蛋白是花粉颗粒的外壳,是陆生植物的一种创新,可保护花粉免受环境压力的源泉。由于其在植物存活中的关键作用,孢子囊素是由在不同物种中高度保守的途径产生的。它也与最常被认为是碳捕获和储存的植物产品(Cutin,suberin和木质素),因为它对降解具有极大的耐药性 - 孢子环素在几个世纪以上与数十年或更低的时间内保持稳定。因此,在植物的根部引入孢子囊的产生可能是一个机会,可以在土壤中大规模,几乎永久捕获和储存碳。如果应用于广泛种植的生物能源或农作物作物,则该潜力可以进一步最大化。这项研究的目的是确定在植物根部产生孢子蛋白所需的基因并将其释放在土壤中。将使用两种替代方法和互补方法实现此目标。首先,将选择一组以前已知是发育中的植物花中孢子囊合成的主要调节剂,将在杨树的根部表达。将在杨树根中平行,以前未知的元素,这些元素改善了孢子蛋白在杨树根中的合成,运输和组装。要测试这些方法的有效性,即将应用杨树根的基因含量并评估根结构和组成中这些变化的后果。当杨树被选为这项研究的目标物种时,因为孢子囊的合成在植物物种中是高度保守的,但在这项研究中进行的发现可能适用于广泛的生物质和食物/饲料/饲料/饲料/生物燃料,例如玉米,sorghum和sugarcane。最后,提议的策略在大规模部署时,有可能从大气中清除大量碳。考虑到典型的杨树生物量产率(5-10吨/ha/yr)和该生物量在地下的分配(20-25%),工程生根以含有5%的孢子囊素的工程生根可永久永久存储32-80 kg/ha的土壤中的碳。此外,据估计,工程3600万公顷的美国玉米作物在根和臭味中占5%的孢子囊蛋白含量,可以使每年5400万公吨的二氧化碳二氧化碳。这是玉米农田中年度长期碳固存的当前最佳实践估计值的两到五倍,并将大大增加土壤碳的储备。这项研究是由生物和环境研究办公室选择的。_____________________________________________________________________________________
摘要过氧化氢和银都可以氧化有机和无机分子,这使它们在许多方面都会影响活生物体的代谢。本文提供了H 2 O 2的影响和银对刺激植物生长和发育的影响的例子,并增加了植物对生物和非生物胁迫的抵抗力。在园艺中使用最下划线的建议是在培养和储存蔬菜,水果和花朵期间控制微型ISM,旨在替代合成农药。含有H 2 O 2,银色或两个成分的准备工作可广泛用于园艺,以喷涂和浸泡幼苗的形式,以保护它们,以在存储期间保护它们,以在种植前的植物和植物性植物,以便在植物和生殖器上进行植物和生根的料理,以便在植物和生殖器上进行快速培养,以便于生产植物,并在植物上进行料理,以便在较快的植物上进行培养,并在植物上进行培养,并在植物上进行培养,并在植物上进行培养,并在培养的过程中进行培养,并在培养的过程中进行培养,并培养了疗养的植物,并在植物上进行了培养,并培养了一个疗养的食物。在风中造成的霜冻损害和伤害,用于消毒种子,并作为植物发育的刺激物和对生物和非生物胁迫的抗性诱导者。但是,他们的实际用途取决于征得立法者在园艺生产中更广泛使用的同意。关键词:过氧化氢,银纳米颗粒,植物保护,微生物的控制,植物刺激剂,抗性诱导
背景:Seisonidea(也是Seisonacea或Seisonidae)是一群生活在海洋甲壳动物(Nebalia Spec。)到目前为止仅描述了四个物种。它的单系起源是主要是自由活动的轮动物(单核,bdelloidea)和内寄生虫棘手的蠕虫(acanthocephala)。然而,rotifera-acanthocephala进化枝(rotifera sensu lato或syndermata)内部的系统发育关系受到持续的争论,这是我们对基因组和生活方式如何发展的理解的后果。为了获得新的见解,我们分析了基因组和主要分类单元Seisonidea的转录组的初稿。结果:对GDNA-SEQ和mRNA-SEQ数据的分析发现了法国通道海岸附近的塞森·尼巴里亚·格鲁伯(Seison Nebaliae Grube)的两个遗传学谱系。尽管基因顺序相同,但他们的线粒体单倍型仅具有82%的序列身份。在核基因组中,不同基因紧凑性,GC含量和密码子的用法反映了不同的弦。单倍体核基因组跨越大约。46 MB,其中96%被重建。根据约23,000个超级转录,S。nebaliae中的基因编号应在rotifera-acanthocephala的其他成员发布的范围内。与此相一致,在nebaliae基因组组装中的后唑核直系同源物和ANTP型转录调节基因在所分析的其他组件中相应数量之间。我们还提供了证据表明,旋转 - acanthocephala中seisonidea的基础分支可以反映出对外组的吸引力。因此,通过重建的祖先序列生根,导致了Hemirotifera(bdelloidea+Pararotatoria)内的单系寄生虫(Seisonidea+acanthocephala)。
抽象的树枝状菌Asper是一种具有较高商业价值的竹类,是世界热带地区大规模农业林木种植园的首选竹子。使用组织培养的微磷化对于产生均匀的克隆至关重要的,这些克隆可容纳在工业农业污染项目中,用于竹类生物量,栖息地恢复或碳固存中。本文报告了使用市售种子建立D. Asper Invitro。使用三种不同的化学剂(次氯酸钠(20%),氯化汞(0.1%)和乙醇(70%),然后在Murashige和Skoog(MS)培养基上以6-苯甲酰胺(BAP)补充,浓度为1.0 -0 -0 -0 -0 -MG/l。在补充不同浓度的IBA吲哚-3-丁酸(IBA)和萘乙酸(NAA)的MS培养基上乘以繁殖,并最终在泥炭苔藓中生根并坚硬。我们的研究结果表明,灭菌方案消除了所有植物病原体,从而产生了轴突培养。补充5 mg/l BAP的全强度MS培养基在接种四个星期后产生的芽数量最高(每位外植体11.46)。在补充了3 mg/l BAP的MS培养基上获得了最高的乘法率(每次外植体3.95芽)。从启动到硬化所需的时间为70至90天,随后植物会准备进行现场试验。这项研究的结果将促进建立致力于生产D. Asper在本地生产的植物组织培养计划,从而消除了对进口的需求以及可能对当地农业林业行业有害的植物病原体的可能进入。关键字:dendrocalamus asper;竹子;微爆; 6苄基氨基嘌呤;吲哚-3-丁酸;萘乙酸; Murashige和Skoog Medium
葡萄糖作物一般称为“ cucullits”。杯子覆盖印度和其他热带国家的最多土地。杯子的卡路里,矿物质和维生素含量很高。杯子种子因其高油脂和蛋白质含量而受到珍贵。通过采用诸如植物生长监管机构之类的投入来提高生产力和食品安全,印度农业已经变得更加机械化和基于科学;植物生长调节剂对农作物营养和产量的影响更快。PGR在葫芦中的给药可通过帮助葡萄藤伸长,增加果实的环境,变化形态和生长特征,并帮助植物耐受疾病相关的困难来刺激生长。在低浓度下GA 3的应用会影响植物的生长并增强生长指标,例如雄花的数量和第一雄花的出现。生长素通过增加分支和叶子的数量来刺激发育。使用空灵,通过增加雌花的数量和抑制雄性开花来改变性别比,从而增加了产量参数。PGRS的外源应用对植物内源激素有影响,从而改变了植物的生理过程。建议的各种植物生长调节剂提高了更快的生长,更早的开花,较低的性别比,更高的水果产量和改善的水果质量。通常,增长调节剂有助于在短时间内生产可销售的水果。关键字:葫芦,PGRS,生长素,Ethrel,Ga 3不同的PGR应用对茎长度,分支数,花的总数,结果,产量和其他产量的特征具有重大影响。pgrs调节奶油作物植物中的生理过程,例如生根,开花,生长,发芽和成熟,并且已证明PGR在葫芦生产中使用PGRs有利于产量和产量,并有助于产量。