肝细胞癌 (HCC) 是全球主要的健康负担,每年导致约 830 万人死亡,是全球第三大癌症死亡原因,相对 5 年生存率约为 18%。由于大多数患者诊断时已处于晚期,以靶向治疗为基础的全身治疗成为唯一可行的选择。基因组研究已经建立了肝细胞癌分子改变的概况,其中可能存在可操作的突变,但这些突变尚未转化为临床实践。第一个获批用于晚期肝细胞癌患者全身治疗的靶向药物是索拉非尼,这是一个里程碑。后续临床试验已确定多种酪氨酸激酶抑制剂用于治疗肝细胞癌,如仑伐替尼、卡博替尼和瑞戈非尼,可对患者产生生存益处。正在进行的全身治疗研究和试验包括各种基于免疫的联合疗法,一些早期结果显示出新的治疗方案的前景和潜力。肝细胞癌的全身治疗因疾病的显著异质性和产生耐药性的倾向而变得复杂。因此,选择更好的个体化治疗方案以造福患者至关重要。迫切需要能够保留体内肿瘤特征的临床前模型来规避异质性和克服耐药性。在本综述中,我们总结了目前针对 HCC 患者的靶向治疗方法以及几种基于患者的肝细胞癌临床前模型的建立。我们还讨论了肝细胞癌靶向治疗的挑战和机遇,以及如何随着靶向治疗和生物工程技术的不断发展实现个性化治疗。
gaowei chong 1,2,Jie Zang 1,Yi Han 1,跑步SU 1,Nopphon Weeranoppanant 3,4(),Haiqing Dong 1,2()和Yongyong Li 1()Li 1()1上海第10人医院,医学院中国2汤吉大学医学院骨科医院骨科教育部的脊柱和脊髓损伤修复和再生的主要实验室。 Vidyasirimedhi科学技术研究所(Vistec),555 Moo 1 Payupnai,Wangchan,Rayong 21210,泰国©Tsinghua University Press和Springer-Verlag Gmbh德国,Springer Nature 2020年的一部分,2020年8月7日2020年8月2020年 / 2020年10月1日接受:2020年10月10日 / DIV> < / DIV>
©作者2024。本文在Creative Commons Attribution-Nortive-Snoderivatives 4.0国际许可下获得许可,该许可允许任何非商业用途,共享,分发,分发和复制以任何中等或格式,只要您适当地授予原始作者和来源,并提供了与Creative Commons许可证的链接,并指示您修改了持牌材料的链接。您没有根据本许可证的许可来共享本文或部分内容的适用材料。本文中的图像或其他第三方材料包含在文章的创意共享许可中,除非在信用额度中另有说明。如果本文的创意共享许可中未包含材料,并且您的预期用途不受法定法规的允许或超过允许的用途,则您需要直接从版权所有者那里获得许可。要查看此许可证的副本,请访问http://creativecommons.org/licenses/by-nc-nd/4.0/。
1 1,瑞士日内瓦大学,日内瓦大学,日内瓦大学手术系的组织工程和器官再生实验室,2个细胞隔离和移植中心,手术系,日内瓦大学医院和日内瓦大学,瑞士日内瓦大学,瑞士,医疗中心,瑞士卫生中心,瑞士卫生中心,瑞士,瑞士,瑞士,瑞士,瑞士。大学,第比利斯大学,佐治亚州,5移植和内脏手术部,瑞士日内瓦大学医院,瑞士日内瓦大学医院,迈阿密迈阿密大学迈阿密大学研究所,迈阿密米尔勒大学,迈阿密米尔勒大学,迈阿密大学,佛罗里达州迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,美国,迈阿密,迈阿密,迈阿密,迈阿密,,迈阿密,,迈阿,迈阿密,,迈阿密,迈阿密,迈阿密,,迈阿,,迈阿,迈阿密,分校,迈阿密,迈阿,迈阿密,迈阿,迈阿密,迈阿,迈阿密,分校,美国,迈阿密,迈阿,迈阿密学院,迈阿密,是佛罗里达州。加拿大,艾伯塔省糖尿病研究所9,艾伯塔大学,埃德蒙顿,艾伯特,加拿大,加拿大1,瑞士日内瓦大学,日内瓦大学,日内瓦大学手术系的组织工程和器官再生实验室,2个细胞隔离和移植中心,手术系,日内瓦大学医院和日内瓦大学,瑞士日内瓦大学,瑞士,医疗中心,瑞士卫生中心,瑞士卫生中心,瑞士,瑞士,瑞士,瑞士,瑞士。大学,第比利斯大学,佐治亚州,5移植和内脏手术部,瑞士日内瓦大学医院,瑞士日内瓦大学医院,迈阿密迈阿密大学迈阿密大学研究所,迈阿密米尔勒大学,迈阿密米尔勒大学,迈阿密大学,佛罗里达州迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,迈阿密大学,美国,迈阿密,迈阿密,迈阿密,迈阿密,,迈阿密,,迈阿,迈阿密,,迈阿密,迈阿密,迈阿密,,迈阿,,迈阿,迈阿密,分校,迈阿密,迈阿,迈阿密,迈阿,迈阿密,迈阿,迈阿密,分校,美国,迈阿密,迈阿,迈阿密学院,迈阿密,是佛罗里达州。加拿大,艾伯塔省糖尿病研究所9,艾伯塔大学,埃德蒙顿,艾伯特,加拿大,加拿大
微藻作为光合生物,有可能生产用于食品,饲料,化妆品,营养素,燃料和其他应用的生物分子。更快的增长率以及更高的蛋白质和脂质含量使微藻成为许多工业应用的流行底盘。但是,诸如低生产率和高生产成本之类的挑战限制了其商业化。为了克服这些挑战,已经采用了生物工程方法,例如基因工程,代谢工程和合成生物学,以提高基于微藻的产品的生产率和质量。采用基因组编辑工具(例如CRISPR/CAS)的基因工程允许精确且有针对性的遗传修饰。CRISPR/CAS系统目前用于修改微藻的遗传组成,以增强特定生物分子的产生。但是,由于某些局限性,这些工具尚未在微藻中明确探索。尽管基于CRISPR的生物工程方法取得了进展,但仍然需要进一步研究以优化基于微藻的产品的生产。这包括提高基因组编辑工具的效率,了解微藻代谢的调节机制以及优化生长条件和培养策略。此外,解决与微藻的遗传修饰有关的道德,社会和环境问题对于基于微藻的产品的负责发展和商业化至关重要。审查将帮助研究人员了解进度并启动微藻中的基因组编辑实验。本评论总结了基于CRISPR的生物工程的进步,用于生产具有工业重要的生物分子的生产,并提供了在微藻中使用CRISPR/CAS系统的关键注意事项。
简介:近年来,全球教育发生了范式的转变;尤其是在生命科学中,专业化已经开始共享应用研究和开发中的共同空间。将跨学科的方法扩展到本科课程,这是一项关于共和国大学生物工程课程入门课程的案例研究(乌拉圭大学)。目标:Covid-19大流行导致将生物工程课程转移到虚拟方式上,改变了教学动力学。本研究旨在分析对虚拟学习新模型的适应。方法:随着时间的推移,分析了不同的课程指标,并对课程的学生和教授进行了调查。结果:尽管虚拟方式提出了一些新的挑战,但总体学生的表现并没有下降。结论:生物工程课程介绍了有趣的内容,尤其是在其课程设计和学生参与中,特别是在其虚拟模式下进行了重塑。
Sastra B.Tech。(生物工程)计划(适用于2009 - 10年及以后的学生)VII代码
缩写:BP1,肿瘤抑制剂p53结合蛋白1; BRCA,乳腺癌抗原;汽车,嵌合抗原受体; CAS9,CRISPR相关蛋白9;级联,抗病毒防御的CRISPR综合体; CMR,CAS模块坡道(重复相关的神秘蛋白质); CMR III-B,多个亚基III型B CRISPR RNA-CAS蛋白; CPF1,Prevotella和Francisella1的CRISPR; CRISPR,定期间隔间隔室; Crrna,Crispr RNA; CSM III-A,多支亚基III-A CRISPR-CAS蛋白; dcas9/ sgrna-sg I,停用cas9/短指南RNA-Sybrr-green i; DNA-PK,DNA-蛋白K; DNA-PKC,DNA蛋白K催化亚基; DSB,双链断裂; ege,额外的基因元素; GRNA,导向RNA; HDR,同源性维修; IAP,碱性磷酸酶同工酶; MRE 11,减数分裂重组11; NHEJ,非同理结局加入; PAM,原始间隔者相邻基序; PD,程序性细胞死亡; RAD,重组酶A;代表,重复的外部回文; RPA,复制蛋白A; RT,逆转录酶; Sgrna,简短的指南RNA; SSB,单链断裂; tracrrna,反式激活CRISPR RNA; XLF,类似XRCC4的因子; XRCC 4,X射线修复交叉补充蛋白4; Yoyo-1,(恶唑黄色)
f eb 16:5.30 pm - 7.30 pm | d Inner&p anel主题演讲:为医疗保健和生物医学翻译AI f eb 17:11 am - 1 pm - 1 pm | l uncheon&p anel where:e ngenering p rogic @ missouri s tate u niversity s tate u niversity; 405 N J Efferson A v。s Pringfield,M O E-F Actory,市区校园(停车位于406 N. B Oonville A Ve。)