按照加速进行重新审查的要求,对1983年的研究进行了文献搜索,并发现了大量的研究。在2023年9月的会议上,向小组提出了一项战略备忘录,要求有关如何结构并介绍发现的大量文献。该小组同意纳入2005年以后发表的研究,并在1983 - 2005年间发表了在单独的数据附录中列出的研究以及摘要,以进行小组的评论。根据要求,准备了本文档,并将通过Google Drive亲自提交面板(由于文档和版权法规的规模)。这些研究的列表在本文中已包含在没有附带的摘要(appendix_toluene_032024)中。与1983 - 2005年发表的研究一起,2005年以后发表的研究与化妆品使用无关,或包含与报告中已经提供的信息纯粹累积的信息,也包括在此列表中。应注意的是,来自小组在其初始重新审查期间评估的未发表的重新浏览文档中的数据(rrdata_toluene_032024)中评估了未发表的重新浏览文档(RRDATA_TOLUENE_032024)。
纤维素是多糖之一,是植物细胞壁的主要成分。在各种类型的纤维素中,纤维直径为4至100 nm,长度为几μM,长宽比为100或更多的纤维素的纤维素称为纤维素纳米纤维(CNF),并吸引了作为领先的生物量材料的注意力。除了CNF的轻重量和高强度外,它们还具有其他出色的功能,包括高气势屏障特性,吸附和透明度以及作为植物来源的材料,生产和处置的环境影响很小。将来,预计将使用汽车组件,电子材料,包装材料和其他应用。纳米纤维素材料的表面可以用硫酸盐基团和羧基等表面官能团修饰,以添加各种功能。在水中,这些表面官能团的离子部分充当带电组,从而提高了水分性。通常,电导滴定方法已用于对这些表面充电组的定量分析。尽管这是一种通用技术,但它存在许多问题,包括需要大量的样品材料(几百毫克)样品材料,但测量时间很长,需要视觉确认,并且结果是根据分析师而差异的。因此,不取决于单个分析师的技能来解决这些问题的简单方法。该实验是在新月大学的Jun Araki教授的合作中进行的。本文使用Shimadzu Ultraviolet-Visible Light(UV-VIS)分光光度计介绍了甲苯胺蓝O(TBO)吸附方法对表面官能团进行定量分析的示例。
通常挑战芳香碳氢化合物和氯化溶剂的混合物污染的地下水的生物修复,因为这些污染物通过独特的氧化和还原途径降解,因此需要不同的修订和氧化还原条件。在这里,我们提供了含有甲苯和三氯乙烯(TCE)的单阶段处理的概念证明,在管状生物电化学反应器中,称为“生物电井”。甲苯用微生物生物射模(最高150 m mol 1 d 1)降解,其用作末端电子受体,其偏光石墨阳极(þ0.2V vs. she)降解。从微生物驱动的甲苯氧化中衍生的电流导致(在不锈钢阴极处)产生(不锈钢阴极),这使TCE降低了TCE的氯化为氯的中间体(即CIS -DCE,VC和ETH),以500 m eq l 1 d 1 d 1 d 1 d 1 d 1 d 1 D.基于“生物电井”的系统发育和功能基因分析确认了具有厌氧甲苯氧化和TCE还原性脱氯代谢潜力的微生物组的建立。然而,甲苯降解和当前产生是由外部质量运输定位限制的,因此表明现有的进一步过程优化潜力。©2022作者。由Elsevier B.V.代表中国环境科学研究所,中国环境科学学院出版。这是CC BY-NC-ND许可证(http://creativecommons.org/licenses/by-nc-nd/4.0/)下的开放访问文章。
本报告是由美国政府某个机构资助的工作报告。美国政府及其任何机构、巴特尔纪念研究所或其任何雇员均不对所披露的信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,或承担任何法律责任或义务,或保证其使用不会侵犯私有权利。本文中对任何特定商业产品、流程或服务的商品名、商标、制造商或其他方面的引用并不一定构成或暗示美国政府或其任何机构或巴特尔纪念研究所对其的认可、推荐或支持。本文中表达的作者的观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。
完整的作者列表:林,Yuhan;深圳理工学院张,江;深圳理工学院,霍夫曼高级材料学院,博士后创新实践基地潘迪,哈迪克;威克森林大学,物理邓,Xinglong;阿卜杜拉国王科学技术大学,高级膜和多孔材料中心,化学与生命科学与工程锣部,Qihan; hao的石油化学研究所王;深圳理工学院,霍夫曼高级材料学院,梁;南中国技术大学,化学与化学工程学院康(Kang);深圳理工学院YU,WEI;深圳理工大学黄色,小子;深圳理工学院,霍夫曼高级材料学院Thonhauser,Timo; Wake Forest University,YU物理学系;阿卜杜拉国王科学技术大学,高级膜和多孔材料中心,化学与生命科学与工程部Li,Jing;罗格(Rutg)新泽西州立大学,化学与化学生物学
法国马赛 ‡ 目前地址:艾克斯马赛大学,CNRS UMR 7257,生物大分子结构与功能,163 avenue de Luminy,13288,马赛,法国。# 通信地址:eddy.pasquier@inserm.fr 分类 大分类:生物科学 小分类:药理学 关键词 癌症;药物靶标预测;胶质母细胞瘤;多药理学;甲苯咪唑;MAPK14 作者贡献 EP 构思了这项研究,分析了数据并撰写了手稿。JAB 进行了大部分实验,分析了数据并起草了部分手稿。KC 纯化了 MAPK14 蛋白并与 SB 一起进行了 TSA 和 ITC 实验。MLG 进行了转录组分析,LH 进行了分子建模工作。他们都撰写了部分手稿。 MF 进行了 ABL1 和 PT 的 TSA 实验,而 FD 进行了 nanoDSF 实验。YC 和 XM 参与了数据分析和手稿准备。PB 进行了计算机模拟目标预测。所有作者都阅读了手稿并提出了改进意见。此 PDF 文件包括:正文 图 1 至 7 表 1 和 2 补充图 1 至 4 补充表 1 和 2
多通道记录来自大脑软生物组织的电信号是电生理学中一项重要的技术。然而,传统的刚性针电极的穿透会对组织造成物理应力并引起组织损伤,从而无法进行稳定的记录。本文报道的方法涉及使用带有微电极的柔性“线状”装置,该装置能够借助类似于缝纫机制的引导微针精确穿透和放置在脑组织内。提出了一种使用可溶解材料的设备固定方案,以实现无应力的针“捕获”和“释放”。将该设备放置在活体小鼠的初级视觉皮层 (V1) 中,并记录局部场电位 (LFP) 和动作电位 (尖峰)。在植入设备后的两周内,小鼠的体重没有明显下降。因此,我们得出结论,所提出的缝纫线设备增强了神经信号的记录,同时最大限度地减少了设备引起的压力。
摘要。背景/目标:我们以前报道了与姜黄素结合使用时氨基磷灰酮衍生物作为对乳腺和其他起源反应性肿瘤的治疗剂的潜力。这项研究旨在筛选新型氨基喹酮衍生物(RAU 008,RAU 010,RAU 015和RAU 018)与姜黄素结合使用姜黄素,以用于细胞毒性,抗血管生成和抗激发和抗抗激素对MCF-7和MCF-7和MDA-MDA-MB-231乳腺癌细胞。材料和方法:使用3-(4,5-二甲基噻唑-2-基)分析细胞毒性和抗血管生成作用-2,5-二苯基溴化溴化物溴化物测定和酶连接的免疫吸收测定;虽然使用粘附测定法,Boyden Chambers和Matrigel测量了抗转移性效应。结果:与单个治疗相比,姜黄素与RAU 008相比在MCF-7细胞中引起了明显的细胞毒性作用,而当与RAU 015和RAU 018结合使用时,它在MDA-MB-231细胞中也显示出相似的作用。MCF-7细胞中RAU 015加姜黄素的抗血管生成作用与MDA-MB-231细胞中的姜黄素和姜黄素相比,抗血管生成的效果比单个治疗更有效,而MDA-MB-231细胞的转移能力可显着降低,用于使用氨基酸氨基酸氨基酸氨基酸氨基氨基素蛋白蛋白蛋白蛋白蛋白蛋白蛋白含量降低。结论:作为针对乳腺癌的治疗剂,aminonaphthoquinones可能会提供巨大的希望,尤其是与姜黄素结合使用时。
1.1.3 纯物质的化学和物理特性 (a) 描述:无色液体,具有特征芳香烃气味 (Budavari, 1996) (b) 沸点:110.6 ° C (Lide, 1995) (c) 熔点:-94.9 ° C (Lide, 1995) (d) 溶解度:极微溶于水(20 ° C 时为 515 mg/L);溶于丙酮;可与二硫化碳、氯仿、乙醚、乙醇和冰醋酸混溶 (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) 蒸气压:6.4 ° C 时为 1.3 kPa;相对蒸气密度(空气 = 1),3.14 (Verschueren, 1996) (f) 闪点:4.4 ° C,闭杯(Budavari, 1996) (g) 爆炸极限:空气中体积上限 7.0%;下限 1.27% (美国政府工业卫生学家会议, 1992) (h) 换算系数:mg/m 3 = 3.77 × ppm
1.1.3 纯物质的化学和物理特性 (a) 描述:无色液体,具有特征芳香烃气味 (Budavari, 1996) (b) 沸点:110.6 ° C (Lide, 1995) (c) 熔点:-94.9 ° C (Lide, 1995) (d) 溶解度:极微溶于水(20 ° C 时为 515 mg/L);溶于丙酮;可与二硫化碳、氯仿、乙醚、乙醇和冰醋酸混溶 (Budavari, 1996; Verschueren, 1996; Lide, 1997) (e) 蒸气压:6.4 ° C 时为 1.3 kPa;相对蒸气密度(空气 = 1),3.14 (Verschueren, 1996) (f) 闪点:4.4 ° C,闭杯(Budavari, 1996) (g) 爆炸极限:空气中体积上限 7.0%;下限 1.27% (美国政府工业卫生学家会议, 1992) (h) 换算系数:mg/m 3 = 3.77 × ppm