电动机丘脑在对主要运动皮层的感觉运动信息和项目的整合和调制中起着至关重要的作用。虽然运动皮层的电压功率谱变化已得到充分表征,但运动丘脑中的相应活性,尤其是宽带(有时称为高伽玛),尚不清楚。本研究的目的是表征15名受试者的手动运动中运动丘脑的光谱变化,该受试者接受了清醒的深脑刺激手术,靶向丘脑的腹侧中间核(VIM)核,以使震颤致残。我们分析了串行场电位记录的主体特异性低频振荡(<30 Hz)和宽带功率(以65-115 Hz频段捕获)的功率变化。与以前的研究一致,我们发现随着运动的低频振荡而广泛降低。重要的是,在大多数受试者中,我们还观察到宽带功率的显着增加,主要是在与估计的VIM区域相对应的下部记录位点。一个主题还执行了一个想象中的运动任务,在此任务中,低频振荡能力被抑制。这些电生理学变化可以用作丘脑功能映射,DBS靶向和闭环应用的生物标志物。
神经工程的最新进展表明,通过长期植入的微电极阵列从受试者的前额叶皮层(PFC)收集的局部田间电位(LFP)信号是用于设计鲁棒和弹性大脑 - 计算机接口(BCIS)[1-4]的峰值计数记录的可靠替代方法。非参数回归的理论已证明对基于LFP的解码器的成功至关重要。如[4,5]所述,非参数回归在LFPS中的应用导致基于著名的Pinsker定理的基于复杂的基于频谱的特征提取技术的发展。与流行的特征提取方法相反,例如基于常规的功率谱密度(PSD)的解码器[6]或基于试验的空间协方差矩阵[7,8]的解码器,仅考虑了LFP信号振幅中存储的信息,Pinsker的特征
摘要:泵送水力储存(PHS)是一项完善的技术,可在长时间内储存能量。斯里兰卡(Sri Lanka)是一个拥有水力发电资源的国家,具有巨大的PHS开发潜力。该国主要水电厂所在的中央高地,由于其有利的地形,高降雨和大型水库提供了许多合适的PHS开发地点。PHS可以提供可靠的能源,减少该国对化石燃料的依赖,并减轻常规能源的负面影响。尽管具有潜力,但斯里兰卡的PHS发展仍面临着几个挑战,包括高资本成本,征用土地问题和环境问题。本文回顾了斯里兰卡电力部门的当前状态,评估了斯里兰卡的PHS潜力,并检查了斯里兰卡的PHS开发的好处。
摘要 — 许多患有以认知控制受损为特征的精神疾病的患者无法从金标准临床治疗中得到缓解,因此迫切需要新的替代疗法。本文开发了一种神经解码器,用于检测十名人类受试者在基于冲突的行为任务(称为多源干扰任务 (MSIT))中的任务参与度。任务参与度在这里特别令人感兴趣,因为在这些状态下的闭环大脑刺激可以增强决策能力。提取电极的功能连接模式。对这些模式进行主成分分析,并将排序的主成分用作输入来训练特定于受试者的线性支持向量机分类器。在本文中,我们表明,任务参与度可以与背景大脑活动区分开来,中位准确率为 89.7%。这是通过从任务执行期间记录的局部场电位构建分布式功能网络来实现的。另一个挑战是,目标导向的努力发生在更高的时间分辨率上。因此,必须以类似的速率检测任务参与度以进行主动干预。我们表明,我们的算法可以在不到 2 秒的时间内从神经记录中检测任务参与度;这可以使用特定于应用的设备进一步改进。
摘要:背景:高频丘脑刺激是对必需震颤的有效疗法,主要影响自愿运动和/或持续的姿势。然而,由于震颤的间歇性质,连续刺激可能会给大脑带来不必要的电流。目的:我们建议通过使用植入刺激的同一电极记录的局部场电位来检测发动机的运动状态来关闭丘脑刺激的循环,以便仅在必要时提供刺激。方法:八名基本震颤患者参加了这项研究。患者特定的支持向量机分类器是第一次使用记录的数据进行训练,而患者进行了发动机震动的运动。然后,实时应用训练有素的模型来检测这些运动并触发刺激的传递。结果:使用所提出的方法,当存在震动运动时,刺激的时间为80.37±7.06%。相比,
通过应用适当的振幅和参数的电场脉冲来提高膜渗透率。此方法称为“电抛液”或“电穿孔”(EP)。使用EP应用,在正常细胞条件下无法穿越膜的颗粒可以通过膜。强烈和短期的电脉冲导致细胞膜上的跨膜电位(TMP)上升(1-5)。当TMP达到临界值时,水孔的形成将允许通过膜进行分子过渡。尽管无法完全表达分子水平的精确机制,但在观察到最高TMP的膜区域已经证明了分子流量(6-8)。EP的有效性取决于应用的电脉冲参数(持续时间,强度脉冲形状和脉冲数)。基于这些参数的影响,EP可以是可逆的或不可逆的(9-11)。可逆EP在医学和生物技术领域中有许多应用,包括电疗疗法和电化学疗法(ECT)(5,12)。不可逆的EP用于肿瘤消融(由于其非热作用)和灭菌目的(11-13)。
图3。ERP分析及其结果的概述。 A. 在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。 B. 在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。 位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。 相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。 相反,在所有试验中的平均水平造成了缓慢的皮质潜力。 C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。 所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。 D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。 AEP的特征成分由3-40 Hz频段捕获。 相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。 E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。 基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。ERP分析及其结果的概述。A.在受试者S3中表现出由听觉刺激(红点)或按钮按(绿点)引起的诱发电势的位置。B.在听觉刺激(左)和位置A1和M1的纽扣刺激期间ECOG活动的时间课程及其跨审判平均值。位置A1处的单次试验ECOG响应在刺激发作处进行相锁定,并表现出与跨审判平均值相同的N1,P1和P2分量。相比之下,位置M1处的单次试验ECOG响应在运动开始时没有相锁,因此在所有试验中,平均没有诱发的电位。相反,在所有试验中的平均水平造成了缓慢的皮质潜力。C。位于A1-3和M1-2的平均AEP(左侧的红色痕迹)和MRP(右侧的绿色痕迹)及其在受试者S3中的平均值。所有听觉位置均表现出清晰的N1,P1和P2组件,并且所有运动位置均具有突出的慢速皮质潜力。D.来自受试者S3位置A1和M1的ERP的时间课程,在两个不同的频带(<3 Hz和3-40 Hz)中。AEP的特征成分由3-40 Hz频段捕获。相反,只有在<3 Hz频段中才能看到MRP中的缓慢负电位。E.基线(-400至0 ms)和ERP(分别为0至400毫秒)周期(分别为顶部和底部)的<3 Hz和3–40 Hz频段(分别为top和底部)的3–40 Hz频段,在所有与任务相关的位置和所有受试者中都计算出来。基线活性主要由3-40 Hz带功率组成(P <0.001,配对t检验)。AEP的P1和N1组件由3-40 Hz带功率(P <0.001,配对t检验)组成,而MRP的主要由<3 Hz频带功率组成(P <0.001,配对t检验)。F.功率(顶部)和3-40 Hz频段中的AEP(底部)的形状,用于试验最高(实心)且最低(虚线)的第10个百分位数的固定力(计算每个任务相关位置,平均所有位置和受试者的平均)。较高的刺激性功率会导致AEP中较高的N1振幅(p <0.05,t检验,fdr校正了n = 22)。G.功率(顶部)和MRP的形状(底部)。前刺激功率不会显着影响MRP的形状(p <0.05,t检验,fdr校正了n = 15)。
据报道,学习障碍儿童的前瞻记忆(PM)存在损害,但很少有研究探讨其背后的神经机制。针对这一问题,本研究应用ERP技术,采用双任务范式探讨21名LD儿童和20名非LD儿童基于事件的前瞻记忆(EBPM)的差异。行为数据分析结果表明,LD儿童的准确度低于非LD儿童。ERP结果显示,两组在ERP成分上存在显著差异,LD组的N300潜伏期更长,但在前瞻正性成分上无明显差异。本研究结果似乎表明,LD儿童在PM任务上的表现较差可能是由于PM线索检测缺陷造成的。这些结果为LD儿童存在PM加工改变提供了证据,其特点是PM线索检测存在选择性缺陷。因此,这些发现为 LD 儿童 PM 的神经生理过程提供了新的见解。
脉冲时间的影响是我们了解如何有效调节基底神经节丘脑皮质 (BGTC) 回路的重要因素。通过电刺激丘脑底核 (STN) 产生的单脉冲低频 DBS 诱发电位可以洞察回路激活,但长延迟成分如何随脉冲时间的变化而变化尚不清楚。我们研究了在 STN 区域传递的刺激脉冲之间的时间如何影响 STN 和皮质中的神经活动。在五名帕金森病患者的 STN 中植入的 DBS 导线被暂时外化,从而可以传递脉冲间隔 (IPI) 为 0.2 至 10 毫秒的成对脉冲。通过 DBS 导线和头皮 EEG 的局部场电位 (LFP) 记录来测量神经激活。 DBS 诱发电位是使用通过联合配准的术后成像确定的背外侧 STN 中的接触器计算的。我们使用小波变换和功率谱密度曲线量化了不同 IPI 对跨频率和时间的诱发反应幅度的影响程度。STN 和头皮 EEG 中的 DBS 诱发反应的 β 频率内容随着脉冲间隔时间的增加而增加。间隔 < 1.0 ms 的脉冲与诱发反应的微小变化相关。1.5 到 3.0 ms 的 IPI 使诱发反应显著增加,而 > 4 ms 的 IPI 产生适度但不显著的增长。当 IPI 在 1.5 到 4.0 ms 之间时,头皮 EEG 和 STN LFP 反应中的 β 频率活动最大。这些结果表明,DBS 诱发反应的长延迟成分主要在 β 频率范围内,并且脉冲间隔时间会影响 BGTC 电路激活的水平。
摘要:铯134和-137在核事故期间普遍存在,长期寿命,可射线毒性污染物释放到环境中。在福岛daiichi核事故期间,大量不溶性,可呼吸CS的微粒(CSMP)释放到环境中。对环境样品中CSMP的监测对于了解核事故的影响至关重要。用于筛选CSMP的当前检测方法(磷光筛查放射自显影)慢效。我们提出了一种改进的方法:使用平行电离乘数气态检测器的实时放射自显影术。该技术允许对放射性的空间解决测量值,同时从空间异质样品中提供光谱数据,一种潜在的级别变化技术,可用于核事故后用于法医分析。使用我们的检测器配置,可检测到CSMP的最小可检测活动足够低。此外,对于环境样品,样品厚度不会对检测器信号质量造成不利影响。检测器可以测量和解决相距≥465μm的单个放射性颗粒。实时放射自显影是放射性颗粒检测的有前途的工具。