摘要 目的。基于皮层电图 (ECoG) 的脑机接口 (BCI) 是恢复神经功能障碍患者运动和感觉功能的有前途的平台。这种双向 BCI 操作需要同时记录 ECoG 和刺激,这在存在强刺激伪影的情况下具有挑战性。如果 BCI 的模拟前端在超低功耗模式下运行,这个问题会更加严重,这是完全植入式医疗设备的基本要求。在本研究中,我们开发了一种新方法,用于在刺激伪影到达模拟前端之前抑制它们。方法。利用基本的生物物理考虑,我们设计了一种伪影抑制方法,该方法采用在主刺激器和记录网格之间传递的弱辅助刺激。然后通过约束优化程序找到该辅助刺激偶极子的确切位置和幅度。在模拟和幻影脑组织实验中测试了我们方法的性能。主要结果。通过优化程序找到的解决方案在模拟和实验中都与最佳抵消偶极子相匹配。在模拟和脑幻影实验中分别实现了高达 28.7 dB 和 22.9 dB 的伪影抑制。意义。我们开发了一种简单的基于约束优化的方法来查找产生最佳伪影抑制的辅助刺激偶极子的参数。我们的方法在刺激伪影到达模拟前端之前对其进行抑制,并可能防止前端放大器饱和。此外,它可以与其他伪影缓解技术一起使用,以进一步减少刺激伪影。
摘要 本会议记录文件包含大约 150 篇论文和 50 场海报会议,这些会议是在关于康复和辅助技术进步的会议上发表的。各个会议重点关注以下主题:老年学、机器人技术、技术转让、感官辅助、计算机应用、信息传播、服务交付模式、语言处理、定量评估、移动性和座位、农村环境、设计特殊教育、临床问题、功能性电刺激、工作安排和语音技术。海报会议涉及移动性和座位、增强和替代沟通以及功能性电刺激、服务交付和技术转让。此外,还包括复活节印章学生设计竞赛的五篇获奖论文。会议论文通常包括摘要、文本、插图或图表、首席研究员的地址和参考文献。(DB)
摘要 引言 随着全球预期寿命的增加,越来越多老年人出现与年龄相关的认知能力下降,开发有效且可广泛应用的预防和治疗方法已成为现代医学的优先事项和挑战。认知训练和经颅直流电刺激 (tDCS) 的联合干预已显示出对抗与年龄相关的认知能力下降的良好效果。然而,很难到临床中心进行重复治疗,特别是在农村地区和行动不便的老年人,而且缺乏临床人员和医院空间,无法在更大规模的人群中开展长期干预。在家中远程监督应用 tDCS 将使参与者更容易接受治疗并减轻临床资源负担。到目前为止,评估以家庭为重点的认知联合干预可行性的研究很少。通过这项研究,我们旨在为多次家庭认知训练结合 tDCS 对健康老年人认知功能的可行性和影响提供证据。方法与分析 TrainStim-Home 试验是一项单中心、随机、双盲、安慰剂对照研究。30 名年龄在 60-80 岁之间的健康参与者将接受为期 2 周的认知训练和左背外侧前额叶皮质阳极 tDCS(目标干预),并与认知训练加假刺激进行比较。认知训练将包括一个字母更新任务,参与者将接受 20 分钟的 1.5 mA 刺激。干预课程将在参与者家中进行,主要结果将是可行性,每个参与者成功完成三分之二的课程即可实现。此外,还将分析训练任务和未训练任务的表现。伦理与传播 格赖夫斯瓦尔德大学医学院伦理委员会已批准了伦理。结果将通过出版物发布
物理治疗和职业治疗是传统中风康复中 ULMI 恢复的主要方法。虽然前者主要基于关节活动、肌肉拉伸和强化,但两者都侧重于特定任务的训练、功能任务练习、强制性运动疗法和日常生活活动(6-9)。尽管付出了所有努力,中风后上肢活动能力并不总是能完全恢复(8、10、11)。这表明需要更多更好的创新技术来康复这些脑血管疾病。在已研究的用于评估其在 ULMI 康复中效果的各种技术中,我们可以提到基于肌电图的生物反馈、虚拟现实、机电和机器人设备、经颅磁刺激、脑机接口(BCI)和用作功能性电刺激疗法(FEST)的功能性电刺激(FES);然而,这些技术尚未广泛应用,并且仍在不断发展和研究中(12、13)。
背景和目的:脑映射是研究中枢神经系统 (CNS) 的解剖和功能。脑映射有许多技术,这些技术在不断变化和更新。从一开始,脑映射就是侵入性的,并且脑映射需要对暴露的大脑进行电刺激。然而,如今的脑映射不需要电刺激,而且通常不需要患者的任何复杂参与。为了进行脑映射,功能性和结构性神经成像起着至关重要的作用。脑映射技术包括非侵入性技术(结构和功能性磁共振成像 [fMRI]、扩散 MRI [dMRI]、脑磁图 [MEG]、脑电图 [EEG]、正电子发射断层扫描 [PET]、近红外光谱 [NIRS] 和其他非侵入性扫描技术)和侵入性技术(直接皮质刺激 [DCS] 和颈动脉内阿米他测试 [IAT] 或 wada 测试)。
材料和方法:我们创新的 BCI-AO 干预措施解码了用户在完成任务时的专注观察。此过程涉及提供奖励性视觉提示,同时通过 PES 激活传入通路。分析包括 15 名中风患者。所有患者在四种不同的实验条件下接受 15 分钟的 BCI-AO 程序:无 PES 的 BCI-AO、有连续 PES 的 BCI-AO、有触发 PES 的 BCI-AO 和有反向 PES 应用的 BCI-AO。PES 以相当于感觉阈值 120% 的强度和 50 Hz 的频率应用于腕部尺神经。实验随机进行,间隔至少 3 天。为了评估皮质脊髓和周围神经的兴奋性,我们比较了四种条件下患手肌肉的运动诱发电位和 F 波在任务前后(0 后、20 分钟后)的参数。
先前的证据表明,当产生的总力量大于每次单一干预时,神经肌肉电刺激 (NMES) 和随意肌肉收缩相结合的干预措施可能对皮质脊髓兴奋性产生更好的影响。然而,目前还不清楚当产生的力量在干预之间匹配时是否存在更好的效果。十个身体健全的个体在不同的日子进行了三次干预:(i) NMES - 胫骨前肌 (TA) 刺激;(ii) NMES+VOL - TA 刺激结合随意踝关节背屈;(iii) VOL - 随意踝关节背屈。每次干预都以相同的总输出施加,即最大力量的 20%,并间歇性地(5 秒开/19 秒关)施加 16 分钟。评估右侧踝关节和比目鱼肌的运动诱发电位 (MEP) 以及腓总神经的最大运动反应 (M max ):每次干预前、干预中和干预后 30 分钟。此外,在每次干预之前和之后评估踝背屈力匹配任务。因此,在 NMES+VOL 和 VOL 会话期间,踝关节 MEP/M max 在干预开始后立即得到显著促进,直到干预结束。与 NMES 相比,在 NMES+VOL 和 VOL 会话期间观察到更大的促进,但它们之间没有差异。运动控制不受任何干预的影响。虽然与单独的自愿收缩相比,没有显示出更好的综合效果,但与单独的 NMES 相比,低水平的自愿收缩与 NMES 相结合可促进皮质脊髓兴奋性。这表明,即使在低水平收缩期间,自愿驱动也可以改善 NMES 的效果,即使运动控制不受影响。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛模式,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。
摘要:慢性疼痛是一个主要的医疗保健问题。迫切需要更好的机制理解和新的治疗方法。在大脑中,疼痛与 alpha 和 gamma 频率的神经振荡有关,可以使用经颅交流电刺激 (tACS) 来针对这些振荡。因此,我们在 29 名健康参与者的慢性疼痛实验模型中研究了 tACS 调节疼痛和疼痛相关自主活动的潜力。在 6 个记录会话中,参与者完成了强直热痛范例,并同时在前额叶或躯体感觉皮质上接受 alpha 或 gamma 频率的 tACS 或假 tACS。同时,收集疼痛评级和自主反应。使用目前的设置,tACS 不会调节疼痛或自主反应。贝叶斯统计数据证实在大多数情况下缺乏 tACS 效应。唯一的例外是躯体感觉皮质上的 alpha tACS,但证据尚无定论。综合起来,我们未发现 tACS 对健康人类强直性实验疼痛有显著影响。根据我们目前和以前的发现,进一步的研究可能会应用针对体感 alpha 振荡的改进刺激方案。试验注册:研究方案已在 ClinicalTrials.gov 上预先注册(NCT03805854)。观点:调节脑振荡是一种很有前途的疼痛治疗方法。因此,我们应用经颅交流电刺激 (tACS) 来调节健康参与者的实验性疼痛。然而,tACS 不会调节疼痛、自主反应或 EEG 振荡。这些发现有助于塑造未来 tACS 治疗疼痛的研究。