新的高效燃煤电厂正在并将继续建设,以减少每兆瓦电力输出产生的污染物量。这些电厂将利用超临界、超超临界和先进超超临界技术。超临界技术之间的区别仅在于蒸汽的压力和温度。压力和温度越高,电厂效率越高。虽然不久的将来的电厂可能需要碳捕获和储存系统 (CCS) 或综合煤气化联合循环 (IGCC) 来实现排放目标,但这些设备超出了本文的讨论范围。下表概述了未来技术的典型压力和温度 (Phillips & Wheeldon, 2011),并指出超超临界和先进超超临界这两个术语不是正式定义。
如果这听起来像是一个很棒的,无限的干净,环保的电力来源,而在钻探井后,没有任何依赖的化石燃料,那正是这样!,但不幸的是,仍然有一个捕获。地热井花费很多,即使在150℃的温度下,从它们中回收的热能也足以产生适度的电力。高昂的资本成本以钻孔和较低的电力输出产生相当昂贵的电力,当您考虑钻探地热井的前期成本时。出于这个原因,地热发电的风和太阳能以每兆瓦的价格优于太阳能,仅在靠近地表的火山活动的地方。地热电力仍然是一个了不起的消息,但是对于世界上的大多数地区来说,经济学是行不通的。
摘要 — 电动汽车 (EV) 的出现有望成为世界可持续能源,特别是可再生能源生产的转折点。电动汽车充电将产生大量额外的电力需求。可再生能源,包括太阳能和风能,可以在技术和经济上满足电网需求。最近的研究表明,电动汽车的智能充电可以增加光伏 (PV)、电力传输和电力使用之间的协同作用,从而产生技术和经济优势。鉴于对这一领域的日益重视,本分析总结了智能充电研究的概述,其中考虑了光伏电力输出和电力消耗。关键词:电动汽车、插电式电动汽车、V2G、RES、电动汽车充电计划、充电站。1
VDER Value Stack 补偿适用于 750 千瓦交流电以上的电表后非住宅项目、远程计量 (RM) 项目和社区分布式发电 (CDG) 项目产生的多余电力。项目最高可达 5 兆瓦交流电,并将电力输出到配电系统。与传统的净计量不同,输出电力的价值根据位置和一天中的时间/一年中的时间而变化。符合条件的技术包括太阳能光伏 (PV)、独立和共置储能、某些类型的热电联产 (CHP)、厌氧消化器、风力涡轮机、小型水电和燃料电池。本文件主要关注太阳能光伏和储能。
购电协议是一种常用的合同类型,允许客户(例如地方政府、州政府或部落政府)使用太阳能电力,而无需支付安装太阳能项目的前期成本。第三方承包商将安装、融资、拥有、运营和维护该系统,而客户通常为太阳能光伏 (PV) 阵列提供屋顶、停车场或土地,并同意每月支付系统生产的电力。与 PPA 一样,太阳能租赁提供类似的安排,但每月支付固定金额,而不是随着太阳能电力输出变化而变化的每月 PPA 付款。PPA 旨在提供低于市场发电成本的每千瓦时价格,尽管实际价格受多种变量影响。
可再生能源的发电量会因一天和一年中的天气条件波动而变化。因此,发电量并不总是能跟上能源需求。为了提高可再生能源工厂的稳定性和可靠性,开发高效和可持续的能源存储系统非常重要。5 最有前途的存储技术之一是泵送热能存储 (PTES) 概念。PTES 系统由热泵和动力循环组成,热泵将可再生能源的电力输入存储为热能,动力循环将其再次转换为电力输出。蒸汽压缩或布雷顿循环用作热泵,而布雷顿或有机朗肯循环 (ORC) 则被选为动力循环。热能可以存储为显热,也可以使用相变材料 (PCM) 或通过化学反应机制存储为潜热。6
摘要 地热发电的普遍优势是其可靠性和基载能力。然而,未来的能源系统需要可靠的能源,这些能源还能对需求的变化做出快速反应。可逆有机朗肯循环 (ORC) 也可用作高温热泵 (HTHP),使地热系统能够更灵活地运行。与区域供热系统和/或储热系统 (例如 HT-UTES) 相结合,可逆 ORC 可以响应电网的需求,从地热盐水中发电或在 HTHP 模式下消耗电力。通过实施存储系统,HTHP 运行期间产生的高温热量可用于在以后增加地热电力输出。这项工作概述了可逆 ORC 在地热系统中的应用和灵活性潜力,并介绍了此类系统的潜在系统布局。
国际上,人们越来越担心能源解决方案在应对气候变化方面缺乏有效性。迄今为止最常见的方法是部署间歇性可再生能源和天然气作为备用。本文介绍了 GridReserve® 热能存储与稳定盐反应堆 (SSR) 结合使用的技术可行性和经济性。GridReserve® 可实现千兆瓦时的热存储,因此可以在长时间无风或无阳光的情况下发电。安装容量成本可以低至燃气发电厂的水平,这最终可以降低可再生能源的总“全部”成本并减少纳税人的账单。大多数小型模块化反应堆 (SMR) 会降低电力输出以提供灵活的电力,而 GridReserve® 则允许 SSR 继续以满功率运行,同时在较短的时间内向电网输送数倍的电力。
在本文中,我们描述了一种新型 CPGES,称为地球电池扩展 II (EBE II),它使用大型表面储罐或气量计在接近大气压的条件下储存二氧化碳。这使得电池放电阶段最多可产生 260 MW e 的电力,而单靠 CPG 只能产生 2.5 MW e。此外,新的 CPGES 系统可以配置为生产可在接近大气压下升华的固体 CO2(干冰),提供 -78 °C 的散热器,可用于一般冷却目的,特别是用于从空气中低温捕获二氧化碳。反过来,这种二氧化碳可用于开发更多这样的 CPGES 系统。如果不需要散热器,可以通过增加(额外)级来优化涡轮机,从而增加电力输出而不会形成干冰。