可靠、模块化且可扩展 Cat PGS 模块是一种坚固、可扩展的储能平台。该模块由预先设计的容器组成,可轻松在现场安装。多个模块可并行运行,以提供更高的电力输出和/或增加能量容量。 可再生能源整合 这些模块设计用于各种可再生系统,包括太阳能和风能。与 Cat ® 微电网主控制器 (MMC) 无缝集成,可实现最大可再生能源渗透和全面资产控制。 瞬态辅助 与发电机组一起使用时,Cat PGS 模块将提供电力以降低因施加大负载而导致的瞬态电压和频率下降。 电网稳定 Cat PGS 可防止许多典型的电源问题,包括电源故障、电压骤降/浪涌以及频率过低/过高情况。 Cat ® 双向电源 (BDP) 逆变器 Cat BDP 逆变器是储能系统的核心。基于为 Cat 电驱动机器开发的技术。 Cat BDP 具有出色的可靠性、耐用性和功能,包括:• 用于充电和放电的控制装置
摘要:本研究旨在分析和管理塔吉克斯坦共和国帕米尔地区基于可再生能源的自治电力系统的最优电力消耗。该任务通过线性规划方法、生产规则和发电消费者电力消耗模式的数学建模来解决。假设所考虑地区的电力消费者有机会通过安装额外的发电能源来独立弥补能源短缺。目标函数是最小化自用电力的财务支出,并通过电力输出和再分配使其最大化。在本研究中,冬季替代能源与日常电力消耗的最佳发电比例确定为水力发电厂(94.8%)、风力发电厂(3.8%)、太阳能光伏发电厂(0.5%)和储能(0.8%);而夏季不需要,因为水力发电厂能够保证能源平衡。因此,每个发电消费者都可以根据所选的能源,独立地最小化他们的电力消耗,并从与其他消费者的能源交换中获得最大化利润,从而成为微电网和微电网层面无碳能源使用的良好典范。
2012 年,第一篇摩擦纳米发电机 (TENG) 论文发表,距今已有近十年,本综述简要概述了将 TENG 技术应用于关键可持续和可再生能源应用的最新技术进展。本文研究了 TENG 在可穿戴设备、波浪、风能和运输等四个关键领域的应用进展。自诞生以来,TENG 取得了巨大进步,并开发了将其应用于大量免费动能来源的方法。然而,与其他形式的能源生产相比,电力输出仍然很低(大多低于 500 W/m 2),未来的主要挑战似乎是进一步提高输出功率和电流、经济地制造先进的 TENG 以及设计 TENG 以在各种实际环境中终身使用。最后,它讨论了在这些应用领域充分发挥 TENG 潜力所面临的紧迫挑战,特别是从材料和制造的角度来看。需要指出的是,要实现基于 TENG 的设备大规模生产,还需要进行大量的研究和开发。 TENG 将在物联网 (IoT)、人机界面、机器学习应用和“净零排放”技术的未来发展中发挥重要作用。
摘要 - 物联网(IOT)是可再生能源研究的重要途径,尤其是在增强风车性能,降低风能成本以及减轻风能风险的方面。本文集中于利用物联网评估风能和太阳能以及估计模块寿命。物联网已改进了评估方法,监视精度和产品测试,绿色能源中的电力网络可靠性和库存管理影响。预测绿色能源输出至关重要,但由于风速爆发而具有挑战性。机器学习(ML)技术用于预测基于风能的电力输出,并对预测方法进行比较评估。物联网技术和算法可实现能源消耗预测,得出更准确的预测和较低的均方根误差(RMSE)。准确的气象预测至关重要,在绿色能源部门中,需要对真实风力发电机数据进行预测模型。该研究旨在开发用于精确预测的技术,重点是针对光伏系统的全面风预测算法。各种ML技术和绿色能源预测软件在这项工作中的准确性评估。
摘要。锂离子存储设备的开发使纳米结构化材料具有巨大的表面积,孔隙率和增强的反应性,这是一个关键的研究领域。这些特殊的特质允许新型的活动过程,缩短锂离子的传输距离,降低特定的表面电流密度,并显着增强电池恒定和特定能力。此外,通过降低具有集成电子导电通道的复合纳米结构,即使在高电荷和放电速率下也可以提高特定能力。在锂离子存储中雇用纳米材料电极可提供能量密度,功率输出,周期寿命或这些优势的任何优势的能源密度,电力输出,循环寿命或从电池单位上的任何优势组合的变化。纳米颗粒或纳米粉电极材料(例如传统微米大小的粉末的超细变体)是该区域中第一个纳米技术应用的主题。由于其导电品质,Carbon Black是锂离子电池中最早使用的纳米材料之一,自该技术创建以来就一直使用。本研究将检查纳米材料是否会影响锂离子电池的寿命和性能,并重点介绍了这些切割材料改善电池寿命和性能的方式。
摘要:风力涡轮机和光伏等可再生能源是环保能源供应的关键。然而,它们不稳定的电力输出对供应安全构成了挑战。因此,具有存储能力的灵活能源系统对于可再生能源的扩展至关重要,因为它们允许存储非需求产生的电力并根据需要重新转换和供应。为此,提出了一种新颖的发电厂概念,其中高温储能 (HTES) 集成在传统微型燃气轮机 (MGT) 的回热器和燃烧器之间。它用于在供应过剩时存储可再生能源,随后用于减少 MGT 运行期间的燃料需求。因此,污染物排放显著减少,同时电网稳定。本文提出了一项数值过程模拟研究,旨在研究 HTES 的不同存储温度和负载曲线对 MGT 性能(例如燃料消耗、效率)的影响。此外,还推导出相关操作点及其工艺参数,如压力、温度和质量流速。由于燃烧室的运行条件受 HTES 的强烈影响,本文对其对燃烧室可操作性的影响进行了详细的理论分析,并对第一个适合该化合物的燃烧室设计进行了实验研究,并在较高的入口温度条件下进行了测试。
注意:此系统旨在减少所需从公用设施提供的电量。根据系统的大小,产生的电量可能会超过电力需求。发生这种情况时,系统将把电力输出回公用电网。如对可能提供的补偿或福利有任何疑问,请联系您的公用事业提供商。以下是寻求帮助的链接 Mid American Energy – https://www.midamericanenergy.com/private-generation.aspx Consumers Energy - https://new.consumersenergy.com/residential/renewable-energy 除非系统包含电池备份,否则此系统在停电期间不会发电 1。作为一项安全功能,光伏系统将在电网停电期间关闭,以免给公用事业工作人员认为未通电的公用电线通电。 1 即使系统已关闭,面板及其导线(通常长 18 英寸)仍有可能通电。光伏系统可以设计为配备备用电池(UPS 系统),以便在电力中断期间运行建筑物中的选定电路数小时或数天。例如炉子、冰箱和/或通用电路。提交要求许可证提交文件概述
风能和太阳能光伏能源系统的间歇性特性导致发电量波动,因为电力输出高度依赖于当地天气条件,从而引发负载遮蔽问题,而负载遮蔽问题又导致电压和频率不稳定。除此之外,高比例的不稳定可再生能源会导致频率变化不稳定,从而影响电网稳定性。为了减少这种影响,大多数风能-太阳能系统通常使用储能系统来平衡负载变化期间的电压和频率不稳定性。一种创新的储能系统是用于风能和太阳能混合能源系统的压缩空气储能系统 (CAES),这项技术是本研究的重点。本研究的目的是通过建模和实验方法检查 CAES 系统的系统配置,并设计 PID 控制器来调节不同负载条件下的电压和频率。本文介绍了基本元件和整个系统,并在 MATLAB/Simulink 环境中针对不同负载条件进行了粗略建模。在德库尔特理工大学西门子实验室的压缩空气储存原型机上,通过实验工作台对开发的模型进行了测试,并探讨了工作参数对系统效率和模型准确性的影响。性能
可靠、模块化且可扩展 Cat ETS 和 ECE 模块坚固耐用,由预先设计的容器组成,可在现场轻松安装。多个储能模块可以并行运行,以提供更大的电力输出和/或增加电池能量容量。安装的模块可优化发电机组的运行。 可再生能源集成 储能模块设计用于与一系列可再生系统配合使用,包括太阳能和风能。与 Cat 微电网主控制器 (MMC) 无缝集成,可实现最大可再生能源渗透和全面资产控制。车载多模式 Cat 双向电源 (BDP) 逆变器能够形成电网,从而允许完全关闭发电机组,进一步降低油耗和运营成本。 电网稳定 ETS 模块还可防止许多典型的电源问题,包括电网断电、电压骤降/浪涌以及频率过低/过高情况。 Cat ® 双向电源 (BDP) 逆变器 Cat BDP 逆变器是储能系统的核心。 Cat BDP 基于为 Cat 电力驱动机器开发的技术,具有出色的可靠性、耐用性和以下功能:• 用于控制充电和放电的控制装置
摘要 可再生能源 (RES) 生产的波动是其在孤立住宅建筑中安装和集成的一个大问题。混合交流/直流微电网有利于 RES 在独立模式下的良好运行和智能能源管理的可能性。本文介绍了孤立运行模式下混合交流/直流微电网的优化研究。电力系统由各种可再生能源 (RES)、光伏阵列 (PVA)、风力涡轮发电机 (WTG)、柴油发电机 (DG) 供电,并由电池存储系统 (BSS) 支持短期存储。本研究的主要目的是优化混合交流/直流微电网内的功率流,以实现孤岛模式下的可靠性。首先,为孤岛 RES 系统开发了一个由混合整数线性规划优化的数学模型,并使用 JAVA 语言通过 CPLEX 求解器求解,然后基于开发的模型,针对不同的离网模式模拟电力系统控制。仿真结果表明,即使在可再生能源电力输出不可预测且能源价格任意的情况下,管理策略也可以在执行优化控制的同时保持电力平衡,并提供可控的负载和电池充电/放电功率。最后,所提出的算法在各种约束条件下尊重实时运行的优化。©2020。CBIORE-IJRED。保留所有权利