T细胞工程改变了癌症免疫疗法的景观。嵌合抗原受体T细胞已表现出在血液学中B细胞恶性肿瘤治疗中具有显着的功效。然而,到目前为止,它们对实体瘤的临床影响已经适度。表达工程T细胞受体(TCR-T细胞)的 T细胞代表了有希望的治疗替代方案。 目标库不限于膜蛋白,并且TCR(例如高抗原敏感性和接近生理信号传导)的内在特征可以改善肿瘤细胞的检测和杀伤,同时改善T细胞持久性。 在这篇综述中,我们介绍了针对不同肿瘤抗原家族的TCR-T细胞获得的临床结果。 我们详细介绍了已经开发出来识别和优化TCR候选者的不同方法。 我们还讨论了TCR-T细胞疗法的挑战,包括毒性评估和抗性机制。 最后,我们分享了一些观点,并突出了该领域的未来方向。T细胞代表了有希望的治疗替代方案。目标库不限于膜蛋白,并且TCR(例如高抗原敏感性和接近生理信号传导)的内在特征可以改善肿瘤细胞的检测和杀伤,同时改善T细胞持久性。在这篇综述中,我们介绍了针对不同肿瘤抗原家族的TCR-T细胞获得的临床结果。我们详细介绍了已经开发出来识别和优化TCR候选者的不同方法。我们还讨论了TCR-T细胞疗法的挑战,包括毒性评估和抗性机制。最后,我们分享了一些观点,并突出了该领域的未来方向。
可再生能源的未来依赖于发现用于高密度储能的新材料。1 由于其多功能性、高极化电位和介电常数,铁电 (FE) ABO 3(A、B = 各种金属离子)钙钛矿是电容器技术中一类受欢迎的材料。2、3 PbTiO 3 和类似的钙钛矿基电容器由于 A 位 (Pb) 与 O 的偏心杂化而表现出出色的能量存储密度。3 然而,Pb 的毒性限制了它们的商业使用,因此需要无铅 FE 替代品。4 遗憾的是,由于 BO 6 八面体旋转/倾斜的反铁电畸变 (AFD) 畸变,导致中心对称 Pnma 空间群的优先稳定,室温下无铅 ABO 3 钙钛矿中的 FE 不稳定性受到抑制。 5 缺陷工程(Ca 掺杂、氧空位等)已被有效利用,通过修改 ABO 3 钙钛矿中的局部 A/B 位对称性来克服这些 AFD 畸变。6 传统上,
加拿大金斯敦皇后大学癌症研究所的生物医学和分子科学系; B宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州佩雷尔曼高级医学中心泌尿外科系; c不列颠哥伦比亚大学泌尿科科学系,不列颠哥伦比亚省温哥华,加拿大; D德国弗莱堡大学医学与医学中心的输血医学和基因治疗研究所; E分司血液学/肿瘤学,Tisch Cancer Institute,伊坎医学院,美国纽约州纽约州西奈山; F美国医学博士NCI,NIH,NIH,NIH,美国马里兰州癌症研究中心免疫肿瘤中心; G.UniversitéParisCité,Institut Cochin,Inserm U1016,CNRS UMR 8104,巴黎,75014,法国; h粘膜炎症和免疫力,法国巴黎75015 Institut Pasteur学院,法国巴黎; I美国德克萨斯州休斯顿市德克萨斯大学医学博士安德森癌症中心外科泌尿外科系;加拿大QC蒙特利尔麦吉尔大学卫生中心泌尿外科J泌尿外科; k加拿大金斯敦皇后大学医学院泌尿外科系; l德克萨斯大学医学博士安德森癌症中心,美国德克萨斯州休斯敦的杰纳特里医学肿瘤学系
抽象的常见热塑料,即聚体(PC),聚(PC),聚(甲基丙烯酸甲酯)(PMMA)和丙烯腈丁二烯苯乙烯苯乙烯(ABS)是在新兴的6G连方系统中的潜在应用,可用于微型填充物和汇总fillectronics andastos,并具有潜在的应用。还需要进行更多的脚步应用,例如整个手持设备的包装,子组件和高频温度,而低成本是关键,而长寿命可能不是要求。在这项工作中,我们利用Terahertz时域光谱从500 GHz到2 THz来表征上述每个热塑性的介电特性和损耗切线。所研究的塑料具有低分散体的6G带中的折射率(〜1.6-1.7)。但是,吸收在高频上增加,因为在无序材料中通常会增加,这突出了6G的关键挑战。尽管如此,与(较高索引)玻璃杯和整个频率范围内(较高的)玻璃杯和陶瓷相比,所研究的所有热塑性塑料表现出低损失的性能,这表明它们是未来6G系统所选应用的有希望的候选者。
计时器外围设备对于所有嵌入式设备至关重要[3]。微控制器单元(MCUS)的摄影师今天提供了大量的计时器模块,从通用物质到高度专业的组件。随着新兴的互联网(IoT),嵌入式控制者的设备,应用程序,应用程序和部署上下文的增加,数量和异质性增加了,对促进可移植性的声音硬件抽象的需求也是如此。嵌入式操作系统(OSS)是在物联网中开发可持续应用的普遍解决方案。越来越流行的嵌入式OS是Riot [1]。此开源OS明确针对低功率和资源约束的嵌入式设备。Riot提供了五个不同的低级计时器模块,它们的使用和功能可用性都不同。通过这项工作,我们想设计一个新的低级计时器界面,该接口统一了当前API并在此简化整个Riot生态系统中的计时器使用情况。我们从第2节中的计时器外围设备进行大规模分析开始,然后绘制低级计时器-API,该计时器API改进了现有的
项目任务表演者在相关任务或子任务标题下得到确认。我们感谢通用电气全球研究中心,詹姆斯·塔尔曼(James Tallman)博士,纳文扬·蒂亚加拉扬(Naveenan Thiagarajan),道格·霍弗(Doug Hofer)博士和Ching-Jen Tang博士的贡献。其他开发贡献者包括帕特里克·达文波特先生,杰弗里·吉福德先生,科里·库克博士和詹娜·马丁内克博士(NREL);亚伦·莫里斯(Aaron Morris)教授和杰森·史克克(Jason Schirck)博士(普渡大学); Ruichong Zhang教授和Xingchao Wang博士(科罗拉多州矿业学校);马修·兰伯特先生(Allied Mineral Products);托马斯·弗林先生和蒂莫西·A·富勒先生(Babcock&Wilcox)。我们感谢Ryan Bowers先生(Worley-Advisian)参与该项目。作者感谢NREL通讯办公室的以下同事:Susannah Shoemaker,Deanna Cook,Patrick Hayes和Star Brunton。我们还要感谢NREL的Mark Mehos为项目开发和审查该报告提供建议。