使用这些先进的显微镜工具研究材料,为在原子层面探索其结构和化学性质提供了机会。电子光学和超灵敏探测器的最佳组合使得即使是最轻、最灵敏的材料也能在亚埃级进行表征。电子束中的像差校正使得能够通过同步 X 射线能量色散光谱和电子能量损失光谱 (EELS) 等技术精确获取原子级化学特性和键合状态信息。因此,最先进的电子显微镜技术对于材料研究至关重要。
使用光子或电子的成像的空间分辨率从根本上受到用于将信息从Sample运送到检测器的物质的波长的限制。但是,达到分辨率的衍射极限需要无像差的成像系统。在低能电子显微镜中实现原子分辨率的挑战主要来自电子光学元件的aber。尤其是色差,可严重恶化低电子能量的成像性能[1-3]。在1936年奠定了理解和补偿这些像差的基础[4,5]。Scherzer定理确定旋转对称的电子镜头不可避免地是色的和球形的。该定理强调了电子显微镜的临界局限性,为数十年的重新搜索奠定了旨在克服这些固有畸变的阶段。在1947年,可以证明电子透镜中的色差和球形像差可以通过使用时变磁场去除旋转对称性或引入空间电荷来纠正[6]。稍后,实验证明了使用己键纠正器对球形畸变的校正[7,8]。这一突破不仅证明了较早提出的理论提议,而且还实现了分辨率的取代,从而取得了显着的电子显微镜能力。超快电子显微镜提供了出色的时间和空间分辨率[9-11]。最近的研究探索了连贯的通过整合高度相干的场排放源[12-14],像差校正探针和增加的探针电流,可以预期该领域的未来进展。尽管可编程和自适应光学器件(例如空间光调节器(SLM))已彻底改变了光学元件[15],但电子光学元件的可编程和适应性相板的开发仍处于早期阶段[16-23]。
蓝相(BPS)是手性液晶,具有拓扑缺陷的常规晶格。通过分子自组装,BPS独特的软性对称性提供了许多与常规液晶不同的优秀特性。,已经开发出化学图案的表面,以将BP的自组装引导为具有所需晶格方向的完美单晶,从而进一步受益于光子学和智能电子光学设备的设计。然而,BP的相关长度(定义为保持相同BP时间端方向的距离,这是一个必不可少的设计参数)迄今仍未透露。在这里,纳米级化学模式设计的替代平面和同型锚固条纹的设计允许系统地研究沿不同动力学途径的图案化区域以外的BP的生长,以及相关长度的时间演化。对相关长度的新理解可用于指导BPS宏观的单晶的合理设计,该设计依赖于减少的图案表面,这为基于BPLC的新功能和开发提供了令人兴奋的材料,以将基于BPLC的功能和开发用于高级光学设备或软材料设计或软材料设计。
• Atomic Mass Unit (amu) • AWS: Amazon Web Services • Bump Plating Photoresist (BPR) • Chip to Wafer (CtW) • CL: Confidence Level • CMOS: Complementary metal-oxide semiconductor • Commercial Off The Shelf (COTS) • Complementary Field Effect Transistor (CFET) • ConOps: Concept of Operations • continuous wave (CW) • DDD: Displacement Damage Dose •设计技术合作/合成技术合作选择(DTCO/STCO)•动态随机访问记忆(DRAM)•EDAC:错误检测和校正•EEEE•EEEE•EEEE:电气,电子,电子力学和电流和电流和电子光学和电力•嵌入式动态随机访问记忆(EDRAM)晶体管(FEFET)•铁电随机访问存储器(FERAM)•铁电隧道连接(FTJ)•FET:FET:现场效应晶体管•FPGA•FPGA:现场编程的门阵列•完全自我对齐(FSAV)•GrandAccélérateurNational d'ions d'ions d'ions d'Ions d'ions lourds lourds(Ganil)
采用多目标遗传算法 (MOGA) 优化方法,对具有五个电极和两个目标函数的静电电子光学系统的设计进行了优化。考虑的两个目标函数是固定图像平面中一次电子束的最小探针尺寸和镜头内探测器平面上的最大二次电子检测效率。耗时的步骤是计算系统电位。有两种方法可以做到这一点。第一种是使用 COMSOL(有限元法),第二种是使用二阶电极法 (SOEM)。前者使优化过程非常缓慢但准确,而后者使其快速但准确性较低。提出了一种全自动优化策略,其中基于 SOEM 的 MOGA 为基于 COMSOL 的 MOGA 提供输入系统。这加速了优化过程并将优化时间缩短了至少约 10 倍,从几天缩短到几个小时。典型的优化系统的探针尺寸为 11.9 nm,二次电子检测效率为 80%。这种新方法可以在具有一个或多个目标函数和多个自由变量的静电透镜设计中实现,是一种非常高效、全自动的优化技术。
高动力石墨烯托管带有线性色散的无质量电荷载体为电子光学现象提供了有希望的平台。受到介电光学微腔物理学的启发,在这些物理学中,可以通过腔形形状对光子发射特性进行有效调节,因此我们研究了在变形的微型货币圆柱柱中捕获的DIRAC DIRAC费米子谐振状态的相应机制,并将其定向发射。在此类石墨烯设备中,后门电压为模拟不同的有效屈光指标提供了附加的可调参数,从而在边界处提供相应的菲涅尔定律。此外,基于单层和双层石墨烯的腔分别表现出klein-和抗Klein隧道,导致相对于居住时间和导致的空腔状态的发射率明显差异。此外,我们发现各种不同的排放特性,具体取决于源载体进入空腔的位置。将量子机械模拟与光射线跟踪和相应的相空间分析相结合,我们证明了在单层石墨烯系统中部端部中发射的电荷载体的强烈结合,并且可以将其与镜头效应相关联。对于双层石墨烯而言,谐振态的捕获更有效,并且发射特性确实取决于源位置。
I. 介绍 Zr/O/W(100) 肖特基电子发射体以其高亮度和良好的发射稳定性而闻名 [1],广泛应用于电子显微镜和电子束光刻系统。肖特基发射体由单晶钨 (100) 尖端组成,该尖端点焊在钨加热丝上,可加热至 1800 K。我们正在为并行电子光刻系统开发直径为 1 毫米的肖特基发射体的微型版本。发射体尖端相对于电子柱中各个电极的对准非常关键。由于热机械原因,尖端在 x − y − z 方向上的位置会随时间而变化,这也会改变电子发射和电子光学。对于数百个发射器的阵列,必须将阵列中各个发射器之间的电子光学特性差异降至最低。在标准肖特基发射器中,尖端在其使用寿命期间在 z 方向上位移 50 µ m。为了补偿这种位移,我们建议使用硅橡胶室温硫化 (RTV) 566 对尖端进行原位位置对准。RTV 566 在 − 115 ◦ C–260 ◦ C 范围内具有良好的热稳定性、低排气性以及与不同材料组良好的粘合性 [2]。RTV 566 广泛应用于各种机械和电子工程应用,如汽车加热软管、芯片键合、太阳能电池、空间应用和火花塞帽。控制 z 轴运动的拟议设计示意图如图所示。1.在
代码 400 – 飞行项目理事会 Sharon Straka 代码 407 – 地球,科学技术办公室 Jacqueline Le Moigne-Stewart 代码 420 – 地球科学项目部 Obadiah Kegege 代码 460 – 探险者和太阳物理项目部 (EHPD) Irving Burt 代码 540 – 机械系统部 Vivek Dwivedi 代码 541 – 材料工程分部 Justin Jones Antonio Moreno 代码 542 – 机械系统分析和模拟分部 Daniel McGuinness Ryan Simmons 代码 546 – 污染和涂层工程分部 Mark Hasegawa Alfred Wong 代码 547 – 先进制造分部 Todd Purser 代码 552 – 低温和流体分部 Matthew Francom Shouvanik Mustafi 代码 553 – 探测器系统分部 John Kolasinski Kevin Denis 代码 554 – 激光与电子光学分部 Anthony Yu Kenji Numata 代码 555 – 微波仪器技术分部Berhanu Bulcha Manohar Deshpande 代码 561 – 飞行数据系统和辐射效应 Kenneth O'Connor 代码 564 – 仪器电子开发分部 Kyle Gregory Gerard Quilligan 代码 592 – 系统工程服务和先进概念分部 Xiaoyi Li 代码 596 – 组件硬件系统分部 Munther Hassouneh Kenneth McCaughey Samuel Price Luke Thomas Luke Winternitz 代码 599 – 任务系统工程分部 Lloyd Purves 代码 665 – 观测天体物理实验室 Edward Wollack Matthew Greenhouse Karwan Rostem 代码 690 – 太阳系探索部 Daniel Glavin 代码 691 – 天体化学实验室 Perry Gerakines 代码 693 – 行星系统实验室 Shahid Aslam 代码 699 – 行星环境实验室 Mahmooda Sultana
该 MPTEM 涉及实现一种新颖的电子光学元件——门控镜,用于将电子输入和输出耦合到多通成像系统。通过快速降低电位(“打开”状态),门控镜将作为透镜工作,并且电子可以输入到 MPTEM。然后可以提高电位(“关闭”状态),门控镜现在作为反射元件工作。可以再次降低电位,将电子输出耦合。我们的设计是一个机械对称的五电极透镜,具有两个外电极、两个内电极和一个中心电极。参见图 1 中的机械加工原型。每个电极将保持在独立于其他电极的静态直流电压下,并在中心电极上施加门控脉冲。中心电极和内电极(每侧)之间的电容约为 5 pF,内电极和外电极之间的电容约为 10 pF。同心真空室将每个电极大约 2 pF 的电容引入地。该门控镜对电压有严格的要求:理想情况下,门控镜将由完美的箱车脉冲串驱动,并始终处于完全打开(透镜)状态或完全关闭(镜子)状态。当然,这需要完美的电响应和无限的驱动电子设备带宽。实际上,需要容忍有限的上升时间和有限的脉冲平坦度。上升和下降时间要求由往返时间≳10 ns 给出。我们的初步目标是实现≤3 ns的上升和下降时间。平坦度要求来自色差考虑。我们的目标是将门控镜对色差的贡献保持在与电子源中的能量扩散引入的色差大致相同的数量级 [8]。因此,目标是在最终的 100 V 驱动电压下实现优于 1 V 的脉冲平坦度,或在我们的台式测试中实现峰峰值电压的 1%。请注意,此平坦度目标不仅适用于用于电子传输的脉冲顶部,还适用于尾部
高分辨率透射电子显微镜 (HRTEM) 能够实现原子分辨率的直接成像,是当代结构分析的核心方法之一。[1] HRTEM 需要大量的电子剂量,因此它主要限于在电子束下稳定的材料,如无机晶体。[2,3] 而有机材料对电子束敏感,[4–6] 因此,目前还没有通用的有机晶体 HRTEM 成像方法,而有机晶体在药物、[7] 有机电子器件 [8,9] 和生物系统中至关重要。[10,11] 对于金属有机骨架 [12–14] 共价有机骨架 [15] 石墨炔薄膜 [16] 酞菁晶体 [17–20] 和有序聚合物的 TEM 成像已经取得了进展,分辨率有所提高。 [21] 然而,在有机物的 TEM 成像中,为了减轻电子束损伤,需要使用低电子剂量来实现对比度,这就需要强烈的散焦条件,这会导致对比度解释困难和精细结构细节的丢失。[22,23] 此外,即使是接近焦点的有机物 TEM 成像,在图像解释方面,也会对轻微的局部结构变化非常敏感。[24] 提供相位恢复图像的 HRTEM 方法可以直接解释图像对比度和精细结构信息,因为它反映了成像对象的实际物理图像。[25,26] 这种方法对于解决与有机材料典型的多态性、异质性和局部无序有关的长期挑战非常有价值。它还可以解决未知的有机晶体结构,包括纳米级域的结构分析。HRTEM 图像形成涉及两个过程:电子与样品的相互作用和电子光学成像过程。后者阻碍了根据真实物体结构进行图像解释,因为 TEM 图像的形成高度依赖于透镜的光学缺陷。[27] 在 HRTEM 中,解开物体和仪器贡献的方法包括像差校正器 [28] 或