目前,人们正在研究具有光控的固态杂质自旋,以用于量子网络和中继器。其中,稀土离子掺杂晶体有望成为光的量子存储器,具有潜在的长存储时间、高多模容量和高带宽。然而,对于自旋,通常需要在带宽(有利于电子自旋)和存储时间(有利于核自旋)之间进行权衡。这里,我们展示了使用 171 Yb 3 + ∶ Y 2 SiO 5 中高度杂化的电子-核超精细态进行的光存储实验,其中杂化可以同时提供长存储时间和高带宽。我们达到了 1.2 毫秒的存储时间和 10 MHz 的光存储带宽,目前仅受光控制脉冲的 Rabi 频率限制。在此原理验证演示中的存储效率约为 3%。该实验是首次使用具有电子自旋的任何稀土离子的自旋态进行光存储。这些结果为具有高带宽、长存储时间和高多模容量的稀土基量子存储器铺平了道路,这是量子中继器的关键资源。
由于具有大规模量子计算的潜力,门控硅量子点中的自旋量子比特正受到越来越多的关注。这种自旋量子比特的读出最准确且可扩展的方式是通过泡利自旋阻塞 (PSB) 完成的,然而,各种机制可能会提升 PSB 并使读出复杂化。在这项工作中,我们介绍了硅纳米线中多电子低对称双量子点 (DQD) 中 PSB 的实验研究。我们报告了对非对称 PSB 的观察结果,当自旋投射到对中的一个 QD 时表现为阻塞隧穿,但当投射到另一个 QD 时表现为允许隧穿。通过分析 DQD 与读出谐振器的相互作用,我们发现 PSB 提升是由 7.90 μ eV 的不同电子自旋流形之间的大耦合引起的,并且隧穿是不相干的。此外,16 个电荷配置中的 DQD 磁谱能够重建 DQD 的能谱,并揭示提升机制是能级选择性的。我们的结果表明增强的自旋轨道耦合可能使硅纳米线中电子自旋的全电量子位控制成为可能。
摘要:固态量子中继器是大规模量子网络的核心部分,纠缠纯化是量子中继器的关键技术,用于从混合纠缠态的集合中提取高质量的非局域纠缠,并抑制噪声对量子信息载体的负面影响。本文提出一种适用于固态量子中继器的、无不完美相互作用的量子点中非局域电子自旋纠缠纯化方法,利用对电子自旋的忠实奇偶校验。在近乎现实的条件下,即使在微腔内嵌入的量子点与圆偏振光子之间存在不完美相互作用,忠实奇偶校验也可以在不破坏非局域固态纠缠的情况下对奇偶校验模式做出正确判断。因此,非完美相互作用纠缠纯化可以防止最大纠缠态转变为部分纠缠态,并保证纯化后非局域混合态保真度达到期望值。由于该方案在接近现实的不完美相互作用条件下是可行的,因此对实验实现的要求会放宽。这些独特的特性使得这种非完美相互作用纠缠纯化在用于大规模量子网络的固体量子中继器中具有更实际的应用。
最受追捧的科学目标之一是实现量子计算 1,它利用量子力学定律和资源来实现快速非常复杂的算法,2-4 实现量子模拟 5 或利用量子密码学。6 这需要一个两级量子系统作为信息的基本单位(量子比特),以及一种以逻辑方式寻址这些量子比特并将它们互连以进行计算的技术。在提出的实现量子比特的系统中,7-10 分子电子自旋对化学家来说尤其有吸引力。11-13 因此,人们做出了重要努力来理解控制过渡金属 14-16 和镧系元素配位化合物中自旋量子相干性的因素。17-19 量子门的实现需要对几个互连的量子比特进行相干操控。分子已被制备成 2 量子比特量子门的原型,要么是非等价纠缠金属离子的二聚体,20,21,要么是具有可切换相互作用的基于金属的量子比特对。22,23 还有人建议将核自旋自由度用作 N -qudits(维度为 N 的信息单位),24,25 并且一些方案依赖于核自旋和电子自旋之间的超精细相互作用来实现复杂的协议,例如量子纠错方法 26 或实现
摘要:合成化学将结构精确性与可重复性相结合,非常适合创建化学量子比特。化学量子比特是量子信息科学 (QIS) 系统的核心单元。通过利用合成化学固有的原子控制,我们解决了一个基本问题,即两个量子比特之间的自旋-自旋距离如何影响电子自旋相干性。为了实现这一目标,我们设计了一系列具有两个光谱不同的量子比特的分子,一个是前过渡金属 Ti 3+ ,一个是后过渡金属 Cu 2+,两种金属之间的分离不断增加。至关重要的是,我们还合成了单金属同类物作为对照。两种金属之间的光谱分离使我们能够在双金属物种中单独探测每种金属,并将其与单金属对照样品进行比较。在 1.2 – 2.5 纳米的范围内,我们发现电子自旋对相干时间的影响可以忽略不计,我们将这一发现归因于不同的共振频率。相反,相干时间由与另一个量子比特配体框架上的核自旋的距离决定。这一发现为光谱可寻址分子量子比特的设计提供了指导。
近表面量子阱的另一个有趣应用是拓扑量子器件。一种使用近表面量子阱的令人兴奋的固态方法是基于马约拉纳粒子的量子比特,其中量子信息被编码在非局域费米子态中。与其他建议的平台相比,这种编码量子比特的方式具有很大的优势,因为其他平台通常存在相干时间短的问题。由于量子信息被编码在非局域状态中,它将受到保护而不会受到局部扰动,因此具有非常长的相干时间的潜力。[2] 然而,即使状态受到保护而不会受到局部扰动,也可以通过马约拉纳粒子的物理交换(编织)来操纵状态,这是由于它们的非阿贝尔统计特性。[3] 理论上已经证明,如果将由夹在两个超导体之间的一维半导体组成的约瑟夫森结放置在垂直于自旋轨道相互作用的磁场中,就会出现马约拉纳准粒子。 [4,5] 达到拓扑相的必要条件之一是超导间隙的关闭和重新打开。超导间隙由磁场关闭,磁场通过对齐电子自旋来破坏库珀对,然后重新打开需要强大的自旋轨道相互作用来阻止电子自旋的对齐。[6]
奥斯陆大学的分子生物科学系一直在使用ESR低温恒温器研究具有生物活性金属中心的酶的结构和功能性能。尤其是该部门对核糖核苷酸还原酶感兴趣,研究了其二铁中心的稳定和短暂的顺磁性态和不同的氨基酸自由基,例如酪氨酸,半胱氨酸和色氨酸。使用ESR低温恒温器是无价的,尤其是对于金属中心的研究,在不同能量水平之间电子自旋分布的基于温度的微调是至关重要的因素。
我们以独立的方式审查并扩展了基于使用随机状态的数值模拟方法的数学基础。通过计算物理相关的特性,例如大型单个粒子系统的密度,特定的热量,电流 - 电流相关性,密度 - 密度相关性和电子自旋谐振光谱。我们通过证明它可用于分析旨在在嘈杂的中间尺度量子处理器上实现量子至上的数值模拟和实验来探索随机状态技术的新应用。此外,我们表明随机技术的概念在量子信息理论中被证明是有用的。
经典计算机信息基于简单的开/关读数。使用一种称为中继器的技术来放大和长距离重新传输这些信息很简单。量子信息基于相对更复杂和安全的读数,例如光子极化和电子自旋。被称为量子点的半导体纳米盒是研究人员提出的用于存储和传输量子信息的材料。然而,量子中继器技术有一些局限性——例如,目前将基于光子的信息转换为基于电子的信息的方法效率极低。大阪大学的研究人员旨在解决这一信息转换和传输难题。