摘要 我们提出了一个框架,将寻找最有效的量子态断层扫描 (QST) 测量集的方法公式化为一个可以通过数值求解的优化问题,其中优化目标是最大化信息增益。这种方法可以应用于广泛的相关设置,包括仅限于子系统的测量。为了说明这种方法的强大功能,我们给出了由量子比特-量子三元组系统构成的六维希尔伯特空间的结果,例如可以通过 14 N 核自旋-1 和金刚石中氮空位中心的两个电子自旋态来实现。量子比特子系统的测量用秩三的投影仪表示,即半维子空间上的投影仪。对于仅由量子比特组成的系统,通过分析表明,一组半维子空间上的投影仪可以以信息最优的方式排列以用于 QST,从而形成所谓的相互无偏子空间。我们的方法超越了仅有量子比特的系统,我们发现在六维中,这样一组相互无偏的子空间可以用与实际应用无关的偏差来近似。
相干电子位移是处理量子信息的一种传统策略,因为它能够将原子网络中的不同位置互连。处理的效率依赖于对机制的精确控制,而这种机制尚未建立。在这里,我们从理论上展示了一种新方法,即利用阿秒单周期脉冲,在比电子波包动态扭曲更快的时间尺度上驱动电子位移。这些脉冲的特征依赖于向电子传递巨大的动量,导致其沿单向路径位移。通过揭示编码量子叠加态的位移波包的时空性质,说明了这一场景。我们绘制出相关的相位信息,并从原点远距离检索它。此外,我们表明,将一系列这样的脉冲应用于离子链,能够以阿秒为单位控制电子波包在相邻位置之间来回相干运动的方向性。扩展到双电子自旋态证明了这些脉冲的多功能性。我们的研究结果为使用阿秒单周期脉冲对量子态进行高级控制建立了一条有希望的途径,为超快速处理量子信息和成像铺平了道路。
拓扑声学领域的灵感来源于凝聚态物质中拓扑绝缘体的发现,拓扑绝缘体是一类具有极不寻常电传导特性的材料。与传统半导体一样,拓扑绝缘体的特点是价带和导带之间存在电子能量间隙(带隙)。对于该带隙内的电子能量,拓扑绝缘体在其本体中不导电,因此得名。然而,任何有限的此类材料样本都必然支持沿其物理边界的传导电流;价带和导带的拓扑特征确保了这些边界电流的存在。因此,这些电流的存在与边界形状或不影响带隙拓扑的连续缺陷和瑕疵的存在无关。了解了这一特性,我们只需分析无限介质能带的拓扑特征,就能预测沿此类材料的任何有限样本边界流动的传导电流的存在(Thouless 等人,1982 年;Haldane,1988 年)。因此,这些电流对缺陷和无序表现出不同寻常的稳健性。电子自旋在定义这些材料的拓扑响应方面起着根本性的作用。
Paola Cappellaro 是麻省理工学院核科学与工程副教授,也是电子研究实验室的成员,她领导着量子工程小组。她于 2006 年获得麻省理工学院博士学位,随后加入哈佛大学理论原子、分子和光学物理研究所 (ITAMP) 担任博士后研究员,之后于 2009 年回到麻省理工学院任教。Cappellaro 教授是 NMR、ESR、相干控制和量子信息科学方面的专家。她是基于自旋的量子信息处理和固态精密测量方面的专家。她与合作者一起开发了 NV-金刚石磁强计的概念并进行了首次演示。Cappellaro 的主要贡献在于开发了核和电子自旋量子比特(包括 NV-金刚石)的控制技术,这些技术的灵感来自 NMR 技术和量子信息思想。目标是实现比传统设备更强大的实用量子纳米设备,如传感器和模拟器,以及获得对量子系统及其环境的更深入了解。她的工作最近获得了空军科学研究办公室颁发的青年研究员奖和梅卡托奖学金。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
将相干光学跃迁与长寿命自旋量子比特耦合的固态量子发射器对于量子网络至关重要。我们在此报告了金刚石纳米结构中单个锡空位 (SnV) 中心的自旋和光学特性。通过低温磁光和自旋光谱,我们验证了 SnV 的反演对称电子结构,识别了自旋守恒和自旋翻转跃迁,表征了跃迁线宽,测量了电子自旋寿命,并评估了自旋失相时间。我们发现,即使在纳米制造结构中,光学跃迁也与辐射寿命极限一致。自旋寿命受声子限制,指数温度缩放导致 T 1 > 10 毫秒,相干时间 T 2 在冷却至 2.9 K 时达到核自旋浴极限。这些自旋特性超过了其他反演对称色心的自旋特性,而这些色心的类似值需要毫开尔文温度。 SnV 结合了相干光学跃迁和长自旋相干性,无需稀释制冷,是可行且可扩展的量子网络应用的有希望的候选者。
摘要:量子状态是由无法直接测量相的波函数描述的,但在干扰和纠缠等量子效应中起着至关重要的作用。相对相信息的损失称为折叠,是量子系统与其环境之间的相互作用引起的。变形也可能是通往可靠量子计算的路径上的最大障碍。在这里我们表明,即使在一个孤立的分子中也发生了变质,尽管并非所有相信息都会通过对中央电子自旋量子QPIT与附近核自旋相互作用的原型磁分子中相互作用的理论研究。依赖分子的残留相干性为提议解释实验的核自旋差屏障提供了微观合理化。附近分子对破裂性的贡献对分离有非平凡的依赖性,在中间距离处达到峰值。分子仅影响长期行为。由于残差相干性很容易计算和与连贯性时间良好相关,因此可以用作磁分子中连贯性的描述符。这项工作将有助于建立设计原理,以增强分子旋转量子的连贯性,并有助于激发进一步的理论工作。
我们提出了一种基于多体自旋梳的大规模通用量子信息处理的理论路径,利用我们在金刚石纳米光子波导中的色心平台实现具有可编程纠缠的量子图。应变固体导致不同色心产生各种位置相关的电子自旋共振频率,从而有效地产生自旋梳。自旋梳由谐振交流应变场驱动,具有可编程周期波形,可执行局部量子位操作,如动态解耦。使用新的梯度上升最优控制技术对串联复合脉冲进行波形优化,以同时校正非共振和振幅误差。原则上,这可以增强所有量子位的相干时间 T2*,而不会消耗太多功率,因为整个系统都是共振的。为了在不同量子位之间创建非局部纠缠相互作用,我们考虑了两种类型的玻色子链路:分别用于连接相同和不同波导中的量子位的声子总线和光学总线。利用制造缺陷和波导基本模式的相应差异,最终可以在我们的量子图中实现全对全纠缠。anand43@mit.edu
与总体自旋行为相比,单分子自旋行为可以在基本构件水平上被准确理解、控制和应用。单分子电子自旋和核自旋在监测和控制方面的潜力为分子自旋器件的发展带来了希望,这些器件通过将单个分子连接在两个电极之间而制成。金属配合物因其优越的磁性而广受赞誉,被广泛用于探索自旋效应的器件中。此外,具有高信噪比、时间分辨率和可靠性的单分子电学技术有助于理解自旋特性。本综述重点介绍了含有金属配合物的器件,特别是单分子磁体,并系统地介绍了该领域在单分子水平上的实验和理论发展现状,包括电子和核自旋的基本概念及其基本自旋效应。然后,介绍了几种在单分子水平上调控金属配合物自旋特性的实验方法,以及相应的内在机制。简要讨论了单分子自旋器件的综合应用和面临的巨大挑战,并展望了该领域未来的潜在发展方向。
a。离心技术:原理,差异离心,密度梯度离心,超中心及其在生物系统中的应用。b。色谱技术:色谱技术的原理类型,例如色谱柱,薄层,纸张,吸附,分区,气体液体,离子交换,亲和力,高性能及其应用。c。光度法和色彩法的原理和技术:啤酒和兰伯特法律,可见和超劣酸酯分光光度计,光谱荧光测定法,荧光法,磷光,磷光,化学发光,涡轮纤维化肾上腺仪,火焰光量原子量原子量原子原子原子吸收量及其应用。d。核磁共振,电子自旋谐振晶体学,质谱法,串联质谱,纳米技术和微结构,研究体内代谢中的技术,NMR,SPECT,PET,PET扫描:原理,仪器,仪器,技术,技术和应用,e。放射性原理:性质和类型,衰减速率放射性衰减,放射性单位,检测和测量,无线电活动,辐射危害及其在生物系统中无线电活动和无线电同位素的预防应用。f。电泳,原理,类型及其在生物系统中的应用。
