随着人们对电子产品微型化的不懈追求,纳米科学有望催生影响我们生活方方面面的新技术。这一迅速发展的领域探索着几纳米尺度系统的物理特性。一纳米,举个例子,是 10 -9 米,它是如此之小,以至于这个逗号的宽度就有 50 万纳米。只有在我们充分了解纳米系统的物理特性之后,应用开发才能全速进行。Chakraborty 的研究涉及解释纳米结构系统的物理特性。他的研究重点很广泛,包括 DNA 分子的新型电子和磁性以及半导体中的自旋输运——这是开发自旋电子器件的重要一步。 (自旋电子学是一门新兴技术领域,利用电子自旋。)他还是快速发展的石墨烯领域的领军研究员。石墨烯是 2004 年首次分离出来的单层碳原子,由于其许多独特的电子特性,随着硅的性能逐渐被推向极限,它有望取代当今的硅微电子学。查克拉博蒂在印度长大,并在那里开始了他的学术研究,在迪布鲁加尔大学获得了硕士和博士学位。他于 1978 年完成学业,次年获得了德国科隆大学著名的亚历山大·冯·洪堡基金会奖学金,后来成为该校的科学助理。
半导体量子点自旋量子比特是一种很有前途的量子计算平台,因为它们可扩展并拥有较长的相干时间。然而,为了充分发挥这一潜力,量子纠错和高效算法需要高保真度的信息传输机制。在这里,我们展示了半导体量子点电子自旋链中绝热量子态转移的证据。通过绝热修改交换耦合,我们在不到 127 纳秒的时间内实现了远距离电子之间的单自旋态和双自旋态转移。我们还表明,这种方法可以级联用于长自旋链中的自旋态转移。基于模拟,我们估计,对于本文研究的实验参数,正确转移单自旋本征态和双自旋单重态的概率可以超过 0.95。未来,将需要状态和过程层析成像来验证保真度超过经典界限的任意单量子比特态的转移。绝热量子态转移对噪声和脉冲定时误差具有鲁棒性。该方法对于基于门的量子计算的大型自旋量子比特阵列中的初始化、状态分布和读出非常有用。它还为半导体量子点自旋量子比特中的通用绝热量子计算开辟了可能性。
采用非平衡格林函数方法结合戴森方程技术,理论研究了与具有强自旋轨道相互作用的拓扑超导或半导体纳米线连接的量子点(QD)中的自旋塞贝克效应(SSE)特性。低温下,在拓扑超导或半导体纳米线末端制备马约拉纳零模(MZM),并以自旋相关的强度与QD杂化。我们认为QD在自旋热积累(SHA)的存在下耦合到两根引线,即引线中的温度自旋相关。我们发现,当QD与MZM中一个模式之间的杂化强度取决于电子自旋方向时,热电势就是自旋极化的,而通过改变SHA的大小可以有效地调节其自旋极化。通过适当改变 QD-MZM 杂化强度的自旋极化、SHA 的大小、点级或 MZM 之间的直接耦合,可以产生 100% 自旋极化或纯热能。我们的研究结果可能在高效自旋电子器件或 MZM 检测中得到实际应用,这些器件目前正在接受广泛研究。本模型在当前纳米技术的范围内,可用于高效自旋热电子器件。
在接下来的课程中,我们将开发一些技术来消除量子系统中不需要的变换。我们将这些不需要的变换称为“量子误差”。首先,考虑经典误差与量子误差的区别是很有用的。在经典硬件中,例如硬盘驱动器的盘片,铁磁材料中局部磁偶极矩的方向用于编码二进制位,即 0 或 1。磁偶极矩是由材料原子中的电子产生的,它们调整自旋方向,从而调整其固有磁偶极矩。由于费米-狄拉克统计产生的“交换能量”,这种调整在能量上是有利的。因此,如果外部磁场对单个电子的磁偶极矩施加的扭矩足以改变其相对于整体的方向,则电子将倾向于重新调整其磁偶极矩与整体。在量子硬件中,情况有所不同,实验者试图控制单个电子自旋态的叠加。在存在外部噪声的情况下,单个电子没有整体压力来保持其配置。此外,在经典情况下,材料电偶极矩的方向只能发生离散变化,例如从 0 到 1。在量子情况下,我们知道单个电子的自旋存在于自旋向上和自旋向下状态的叠加中,这由连续体描述。以孤立电子为例,其哈密顿量 H = ω σ z
摘要:我们在此报告了对酞菁氧钒 (VOPc) 的磁弛豫和量子相干性的研究,VOPc 是一种多功能且易于处理的潜在分子自旋量子比特。通过一种基于交流 (AC) 磁化率测定法、连续波 (CW) 和脉冲电子顺磁共振 (EPR) 光谱相结合的新兴多技术方法,研究了纯态 VOPc ( 1 ) 及其在同结构抗磁性宿主 TiOPc 中的晶体分散体,这些 VOPc 的化学计量比不同,即 VOPc:TiOPc 1:10 ( 2 ) 和 1:1000 ( 3 )。交流磁化率测量表明,在高达 20 K 的温度下,弛豫速率呈线性增加,这与直接机制的预期一致,但在施加的静态场值(高达约 5 T)的很宽范围内, 仍然很慢。对 3 进行的脉冲 EPR 光谱实验表明,在室温下仍具有量子相干性,T m 在 300 K 时约为 1 s,这是迄今为止分子电子自旋量子比特获得的最高值。在室温下,在这种核自旋活性环境( 1 H 和 14 N 核)中也观察到了 2 的拉比振荡,这表明这种分子半导体中量子相干性的突出稳定性,可用于自旋电子器件。
在光学量子计算和通信框架中,主要目标是构建接收节点,使用单个固定量子位对传入光子实施条件操作。特别是,对可扩展节点的追求推动了腔增强自旋光子接口与固态发射器的发展。然而,一个重要的挑战仍然是,以确定性的方式产生稳定、可控、自旋相关的光子状态。在这里,我们使用电接触柱状腔,嵌入单个 InGaAs 量子点,以展示单个电子自旋对反射光子引起的巨大极化旋转。引入了一种完整的层析成像方法来推断在存在自旋和电荷波动的情况下,由特定自旋状态决定的输出极化斯托克斯矢量。我们通过实验接近庞加莱球中条件旋转π2、π和π2的偏振态,外推保真度分别为(97±1)%、(84±7)%和(90±8)%。我们发现,增强的光物质耦合,加上有限的腔双折射和降低的光谱波动,可以针对庞加莱球中的大多数条件旋转,同时控制经度和纬度。这种偏振控制可能对使自旋光子接口适应各种量子信息配置和协议至关重要。
摘要:在量子理论早期以来,搜索打破晶格晶格对称性的非常规量子阶段一直是物理学的重点,这是由基本兴趣和潜在应用驱动的。突出的例子包括铜土超导体,这些导体以其非常规的D-Wave Cooper配对和无耗散运输而闻名。在本演讲中,我们将讨论我们最近的发现[1],该发现是由我们的早期预测和对非常规旋转型效应的预测和观察结果所激发的[2,3,4]。与共同的铁磁性和抗铁磁性不同,这种非常规的雌雄同体相(请参阅图)打破了晶体晶格的对称性,并在其自旋和电子结构中同时具有d,g或i-甲状化波的特征[1]。d-wave altermagnetism代表了D波超导的磁性类似物。我们通过采用和开发一个对称框架来确定altermagnetism,该框架考虑了涉及电子自旋和晶格的配对转换。该框架正在作为磁晶体研究中的新范式出现。我们将通过讨论(i)半导体MNTE的altermagnetic带结构来证明其有用性,我们最近通过使用光发射光谱[5]和(ii)鉴定了240多种现实的Altermagentic候选者,我们最近通过协作工作对此进行了实验观察。
随着半导体器件的缩小尺寸出现饱和迹象,微电子学的研究重点转向寻找基于新颖物理原理的新型计算范式。电子自旋是电子的另一个固有特性,它为目前在微电子学中使用的基于电子电荷的半导体器件提供了附加功能。自旋电流注入、自旋传播和弛豫以及栅极的自旋方向操控等几个基本问题已成功得到解决,从而使电子自旋能够用于数字应用。为了通过电方法产生和检测自旋极化电流,可以采用磁性金属触点。Boroš 等人 [1、2] 讨论的铁磁触点应足够小,以构成具有明确磁化方向的单个磁畴。小畴的磁矩在过去曾被成功利用,现在仍用于在磁性硬盘驱动器中存储信息。由此,二进制信息被编码到畴的磁化方向中。畴的磁化会产生可检测到的杂散磁场。交变磁矩会产生方向相反的磁场。读头可以检测到磁场并读取信息。Khunkitti 等人 [ 3 ] 的研究显示,高灵敏度磁头是实现超高磁密度磁数据存储技术的重要因素。为了写入信息,需要通过流入磁头的电流产生接近磁畴的磁场。正如 Khunkitti 等人 [ 4 ] 所指出的,记录密度主要取决于磁性介质的特性。如果没有外部磁场,磁畴的磁化将得以保留,不会随时间而改变。因此,在电子设备中添加磁畴可实现非易失性,即无需外部电源即可保持设备功能状态的能力。此外,可以通过在小磁畴中运行自旋极化电流来操纵其磁化方向。如果电流足够强,磁畴的磁化方向与自旋电流极化方向平行。通过电子电流对磁畴进行纯电操控,为开发一种具有更高可扩展性的概念上新型的非易失性存储器提供了令人兴奋的机会。冲击自旋极化电流可以由流经另一个铁磁体的电荷电流产生,该铁磁体与小磁畴之间由金属间隔物或隧道屏障隔开。由两个铁磁触点组成的夹层结构的电阻在很大程度上取决于触点在平行或反平行配置中的相对磁化方向。因此,编码到相对磁化中的二进制信息通过夹层的电阻显示出来。这种新兴的存储器被称为磁阻存储器。磁阻存储器结构简单。它们具有出色的耐用性和高运行速度。磁阻存储器与金属氧化物半导体场效应晶体管制造工艺兼容。它们为概念上新的低功耗数据计算范式开辟了前景
最受追求的科学目标之一是实现量子计算,1使用量子力学的法律和资源来实施快速非常复杂的算法,2-4实现量子模拟5或利用量子密码学。6,这需要一个两级量子系统作为信息的基本单元(Qubit)和一项以逻辑方式解决这些量子的技术,并将它们互连以进行计算。在实现Qubits的拟议系统中,7-10分子电子自旋对化学家特别有吸引力。11-13因此,已经做出了重要的努力,以了解控制过渡金属14-17和灯笼配位络合物中自旋量子相干性的因素。18-20量子门的实现需要对几个相互连接的量他的相干操纵。分子已作为2 Quit量子门的原型制备,要么是不等纠缠金属离子的二聚体,21,22,要么作为具有可切换相互作用的金属基量子对。23,24还建议将核自旋自由度作为n- Qudits(维度N的信息单位),25,26,一些方案依赖于核和电子旋转之间的超精细相互作用来实施精心的协议,例如量子误差校正方法27或Grover Algover Algover Algover AlgoRith的实现。28最近的报告提出了
可靠地创建大规模和高度比率的Microlens阵列1-3可能会影响多个研究和量子技术的几个领域。微晶体来使垂直腔发射激光器(VCSEL)阵列的输出4,5和量子发射器6-9,以通过提高与设备活动区域10-12的耦合并提高互连接器的效率13 – CHIPS的效率来提高图像的灵敏度。在量子技术中,微米尺度的固体沉浸式镜片(SILS)在从单个固态量子发射器中的单个光子16-18中的单个光子中发挥了重要作用。在固态矩阵中,通常会受到全部内部反应的限制,这将大部分发射捕获在高索引培养基中。通过以大角度去除折射,SILS可以将收集效率提高到10-20,例如,与钻石19中与单氮胶菌(NV)中心相关的自旋/光子界面所示。- 床上用品NV中心具有壮观的突破,例如其电子自旋18的单发射击读数,第一个漏洞的铃铛测试20和实现了远程固态量子设备的多节点Quantum网络21,22的多节点Quantum网络。最近,该技术还扩展到具有更好成熟的其他材料中的类似量子发射器,例如碳化硅23-25。
