Loading...
机构名称:
¥ 1.0

最受追求的科学目标之一是实现量子计算,1使用量子力学的法律和资源来实施快速非常复杂的算法,2-4实现量子模拟5或利用量子密码学。6,这需要一个两级量子系统作为信息的基本单元(Qubit)和一项以逻辑方式解决这些量子的技术,并将它们互连以进行计算。在实现Qubits的拟议系统中,7-10分子电子自旋对化学家特别有吸引力。11-13因此,已经做出了重要的努力,以了解控制过渡金属14-17和灯笼配位络合物中自旋量子相干性的因素。18-20量子门的实现需要对几个相互连接的量他的相干操纵。分子已作为2 Quit量子门的原型制备,要么是不等纠缠金属离子的二聚体,21,22,要么作为具有可切换相互作用的金属基量子对。23,24还建议将核自旋自由度作为n- Qudits(维度N的信息单位),25,26,一些方案依赖于核和电子旋转之间的超精细相互作用来实施精心的协议,例如量子误差校正方法27或Grover Algover Algover Algover AlgoRith的实现。28最近的报告提出了

Bis-vanadyl配位复合物作为2 Quit的量子门

Bis-vanadyl配位复合物作为2 Quit的量子门PDF文件第1页

Bis-vanadyl配位复合物作为2 Quit的量子门PDF文件第2页

Bis-vanadyl配位复合物作为2 Quit的量子门PDF文件第3页

Bis-vanadyl配位复合物作为2 Quit的量子门PDF文件第4页

Bis-vanadyl配位复合物作为2 Quit的量子门PDF文件第5页

相关文件推荐

2021 年
¥2.0
2020 年
¥1.0
2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥8.0
1900 年
¥1.0
2022 年
¥2.0
2025 年
¥1.0
2023 年
¥2.0
2021 年
¥6.0
2021 年
¥5.0
2021 年
¥1.0