Loading...
机构名称:
¥ 1.0

许多决策问题涉及通过与环境互动并观察这些相互作用产生的奖励来学习。在机器学习领域,这一研究属于所谓的增强学习(RL)和训练与环境相互作用的人工剂的算法(Sutton和Barto,2018; Kaelbling et et and; Kaelbling等人。,1996; Bertsekas和Tsitsiklis,1996)。我们在这里对匪徒家族问题的最佳手臂识别(BAI)问题感兴趣,这与RL问题集有关,其中与环境的互动会产生立即奖励以及不必要的长期计划(请参阅Lattimore和Szepesvári,2020年的长期计划)。更确切地说,我们对BAI问题的量子版本感兴趣,为此我们设计了能够解决该问题的量子算法。Quantum机器学习是量子计算和机器学习界面上的一项研究场,目的是使用量子计算范式和技术来提高学习算法的速度和性能(Wittek,2014; Biamonte等人。 ,2017年; Ciliberto等。 ,2018年; Schuld和Petruccione,2018年)。 量子计算中的一个基本概念是量子叠加,这是量子算法(1996年)之类的量子算法(最受欢迎的量子算法之一)成功地解决了从n个项目的无结构数据库中删除一个项目的问题,否,2017年; Ciliberto等。,2018年; Schuld和Petruccione,2018年)。量子计算中的一个基本概念是量子叠加,这是量子算法(1996年)之类的量子算法(最受欢迎的量子算法之一)成功地解决了从n个项目的无结构数据库中删除一个项目的问题,否

量子强盗

量子强盗PDF文件第1页

量子强盗PDF文件第2页

量子强盗PDF文件第3页

量子强盗PDF文件第4页

量子强盗PDF文件第5页

相关文件推荐

2021 年
¥2.0
2020 年
¥1.0
2023 年
¥6.0
2025 年
¥1.0
2021 年
¥1.0
2023 年
¥28.0
2022 年
¥1.0
2021 年
¥1.0
2020 年
¥4.0
1900 年
¥1.0
2024 年
¥1.0
2024 年
¥4.0
2024 年
¥28.0
2025 年
¥1.0
2020 年
¥1.0
2020 年
¥8.0
1900 年
¥1.0
2022 年
¥2.0
2023 年
¥2.0
2021 年
¥6.0
2021 年
¥5.0
2021 年
¥1.0
2023 年
¥3.0
2023 年
¥3.0