碳纳米管(CNT)近年来一直在LIB电极的发展中成为下一代导电添加剂。CNT由在管状结构中排列的SP 2碳组成。它们的纵横比使它们成为导电添加剂的理想选择,其中一些品种的直径在纳米尺度上,并且长度在微米尺度上。它们的性质是可调的,并且取决于层,结构缺陷,平均物理维度和表面功能化的数量。由于这种独特的结构和高电子电导率,CNT有望降低电极的欧姆电阻,提高快速充电期间的容量和容量的保留,并最终延长周期寿命。lifepo 4(LFP)是Lib阴极的活性材料,由于其高热稳定性,循环稳定性和低成本,因此越来越多地采用。但是,LFP的电导率较低。在LFP中添加少量CNT可以提高电导率,从而使LFP/CNT成为LIB电极中日益流行的组合。
基于聚合物的SES具有足够高的离子电导率和出色的热稳定性,高环境稳定性,出色的柔韧性和可扩展的处理,其成本低。[19]基于聚乙烯(PEO)的聚乙烯。但是,它们有一些缺点:室温下的离子电导率低和氧化分解电位(低于4 V)。[20,21,22]在各种聚合物中,基于PEO的电解质是对SSB的最广泛研究的,其优势具有良好的电化学稳定性,具有LI阳极,处理性和兼容性。CE-RAMIC的固态电解质(SES)可以提供改善的电导率和电化学窗户。[23]目前,最常见的SES类是聚合物和陶瓷,例如氧化物(例如LLZO),磷酸盐(E.gnasicon),硫化物(例如Li 10 Gep 2 S 12,Li 6 Ps 5 X)和卤化物(例如Li 3含6,li 3 incl 6,li 3 ybr 6)。[2,18]在复合固体电解质(CSE)或杂交电解质的开发中,将少量(高达40 wt%)的无机活性填充剂(Perovskite,Garnet,Lisicon,Lisicon等)掺入已经广泛报道。[22,23]无机活性填充物可以在CSE的大部分区域形成连续的离子通道,并促进快速离子运输以提供更高的离子电导率,而不会构成基质的灵活性。[24]仍然有足够的空间来发展更好的CSE,以达到更高的离子连接性,而不会降低其机械性能。[25]
透明的导电氧化物(TCO)薄膜是许多光电应用中的基石,包括显示器,光伏和触摸屏。在这些设备中,需要同时具有较高光学反式差异和电导率的薄膜。理想情况下,在正常设备操作期间产生的热量必须理想地补偿以实现最佳功能。解决热人类生物问题的一种可能方法是将热电(TE)属性添加到TCO膜中。然而,在保持最佳电导率和光学透明度的同时提高了TE性能是具有挑战性的:热和电运输特性已深深交织在一起。在这里,我们演示了一种方法,可以独立选择光学透明度,电导率和导热率。嵌入的纳米图案结构充满了二锡氧化物(ITO),并将其夹在两个ITO层之间。所得的三层结构表现出降低的导热率和出色的电导率。这是通过嵌入的ITO纳米模式中的电子通道来实现的,该纳米模式在电气连接顶部和底层的情况下,同时限制了声子介导的热传导。调整纳米图案的填充分数和厚度以提高光学传输,从而获得高于裸露膜的透明度。结果是透明的TCO三层层膜,具有同时高的TCO和功绩的热电图。
由于其高功率密度、环境友好、卓越的充放电能力、长循环寿命和安全性,纳米材料成为最有希望的储能候选材料之一。[4,5] 将纳米材料加工成具有高电导率和良好机械稳定性的独立薄膜对超级电容器具有重要意义。要为高性能超级电容器选择合适的纳米材料,必须考虑卓越的表面特性、固有的高强度和电导率。[6,7] 在寻找能够提供所有这些特性的替代品的过程中,最近发现的二维材料 MXene 显示出巨大的潜力。MXenes 是二维家族中的一种新型候选材料(MXenes 描述为 M n + 1 X n T x ,其中 M、X 和 T x 通常代表早期过渡金属、C 或 N,以及吸附的表面功能团如 OH、 O 和 F,其中 n = 1、2 或 3)。 [8] 2D 过渡金属碳化物和氮化物 MXene(包括 Ti3C2Tx、Mo2CTx 和 V4C3Tx)具有高金属电导率、优异的循环稳定性和丰富的表面化学基团,是超级电容器的优良电极材料。[9] 通过真空辅助过滤制备 MXene 独立膜是实现这些特性的最佳选择。[10] 例如,卷曲的 Ti3C2Tx 薄膜表现出 150 000 S m−1 的高电导率和重量电容
ISRO的空间应用中心(SAC)开发了用于空间硬件的电镀工艺,以实现所需的表面工程特性,例如EMI/EMC,电导率,非电导率,腐蚀性,腐蚀性,焊接性,发射性,并为热控制涂层提供良好的基础。这些过程有资格用于太空使用,并进行非常紧密的公差,并经过各种测试,例如视觉检查,粘附测试,环境测试以及符合ASTM和MIL标准的特定于工程属性测试。
图 3. 含 GPE 陶瓷的物理化学性质。 (a) 由 PVDF-HFP 和 Al 2 O 3 纳米粒子通过路易斯酸碱分子间键合形成的准固态聚合物示意图。 (b) GPE 的电解质吸收分析与 A 2 O 3 含量的关系。 经许可复制。 96 版权所有 2020,Wiley-VCH。 (c) 具有钠离子传导路径的复合混合固体电解质 (HSE) 的模型表示。 (d) 离子跳跃和增塑剂离子传输对电导率和 Na 迁移数的贡献图。 (e) 复合固体膜、醚基液体电解质和 HSE 的热重分析 (TGA) 结果。 经许可复制。 98 版权所有 2015,皇家化学学会。 (f) 所得 GPE 薄膜在室温下的离子电导率,通过改变填料含量进行改性。 (g) 离子电导率与温度的关系。 (h)GPE-0 和 GPE-4 薄膜的线性扫描伏安曲线。经许可转载。99 版权所有 2021,爱思唯尔。
最近,在碳悬浮的石墨烯(SG)中观察到了分数量化的霍尔效应,这是碳的自由单层,在那里发现它持续到t = 10 k。这些实验的最佳结果是在微米大小的液压上获得的,只能在其上进行两端的运输测量。在这里,我们从两端电导率中提取分数量子霍尔状态的转运系数的问题并解决了问题。我们基于二维磁转运的共形不变性开发一种方法,并通过分析SG上的测量结果来说明其使用。从从测得的两端电导率中提取的纵向电导率的温度依赖性,我们估算了分数定量ν= 1 /3状态中准颗粒激发的能量间隙。发现间隙比基于GAAS的结构大得多,这表明悬浮石墨烯中的电子相互作用更强。我们的方法为悬浮石墨烯和其他纳米级系统中量子传输的研究提供了一种新工具。