摘要。在当今社会中,绿色能源的使用变得越来越重要。因此,电动汽车目前是公共和个人流动性最环保的手段。为了提高电池的安全性,存储能力和使用寿命,提出了基于BMS系统的新能量车辆设计和测试电池特性和管理系统的研究。本文主要研究BMS测试系统平台设计和SOC估计方法。设计了用于电动汽车的模块化集成BMS自动测试平台。基于PXI硬件体系结构和LabView软件开发环境,该平台符合BMS汽车行业推荐的测试项目。结果表明,将实际SOC值与BMS的估计值进行了比较。在440A常数电流下,正在测试的BMS被排出100s,然后在440A常数电流下充电100s。测试平台检测到正在测试的BMS的SOC估计准确性,SOC估计错误均在2%之内,符合标准要求。因此,符合BMS汽车行业推荐标准的测试项目适用于用于电动汽车的BMS产品的工厂检查和类型检查项目,并且模块化平台设计有利于随后的扩展和升级BMS测试功能。
采用通过充电端口提供的传入的AC电力,并将其转换为直流电源,以充电牵引电池。它还与充电设备和监控电池特性(例如电压,电流,温度和充电状态)进行通信。6。电力电子控制器:
要模拟电池特性,首先将电池模型加载到BV9211B高级电池测试和仿真软件中。该软件算法将实时遵循电池模型并模仿电池行为。该软件支持两种类型的电池模型 - CSV文件中具有VOC,SOC和RI参数的软件或外部电池模型生成的配置文件。为简单起见,您只需要输入四个参数即可模拟电池 - 容量评级,当前限制,初始SOC和切断条件。在模拟电池时,软件同时测量电压和电流,并保存测量结果。该软件允许您立即更改电池的充电。此外,您可以加载在不同温度下创建的多个电池模型。
快速灵活的采购:精确的空间光伏特性分析,实现先进技术融合。太阳能电池和太阳能电池阵列是航天器最脆弱和最昂贵的子系统之一。随着采购周期缩短和威胁愈发动态,航空航天正在采用由最先进的太阳能电池特性分析和原型设计支持的敏捷任务保障流程来应对。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级的电流、电压、温度和太阳照射角度测量。客户可以在实验室中对先进太阳能电池技术的在轨性能进行特性分析,从而将先进技术更快地融入空间系统。
快速灵活的采购:精确的空间光伏特性分析,实现先进技术融合。太阳能电池和太阳能电池阵列是航天器最脆弱和最昂贵的子系统之一。随着采购周期缩短和威胁愈发动态,航空航天正在采用由最先进的太阳能电池特性分析和原型设计支持的敏捷任务保障流程来应对。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级的电流、电压、温度和太阳照射角度测量。客户可以在实验室中对先进太阳能电池技术的在轨性能进行特性分析,从而将先进技术更快地融入空间系统。
科学驱动的敏捷性:精确的空间光伏特性分析,助力先进技术融合。太阳能电池和太阳能电池阵列是航天器中最脆弱、成本最高的子系统之一。随着采购周期缩短和威胁变得更加动态,航空航天正在通过敏捷的任务保证流程做出响应,并由最先进的太阳能电池特性分析和原型设计提供支持。我们的空间光伏专业知识对于航空航天测量单元的开发至关重要,该单元将高精度零漂移模拟电路与低功耗数字电子设备相结合,可在传统测试装置的一小部分尺寸下进行实验室级电流、电压、温度和太阳照射角度测量。客户可以在实验室中表征先进太阳能电池技术的在轨性能,从而更快地将先进技术融入太空系统。
电极制造过程强烈影响锂离子电池特性。电极浆料特性和涂料参数是影响电池性能和寿命的电极异质性影响的主要因素。然而,由于可以在此过程中可以调整的大量参数,因此很难对电极制造参数对电极异质性的影响进行分析。在这项工作中,开发了一种数据驱动的方法,以自动评估参数的影响,例如浆料中的配方和液体与固定比,以及用于电流收集器上电极异质性的涂层的差距。通过实验测量产生的数据集用于训练和测试机器学习(ML)分类器,即高斯naives贝叶斯算法,用于预测电极是否均质或异质性,具体取决于制定量参数。通过2D表示,详细评估了制造参数对电极异质性的影响,为优化下一代电池电极的强大工具铺平了道路。
能力 Silvia Bodoardo 的主要研究活动是在都灵理工大学的电化学小组,该小组开展了综合的国内和国际研究活动,这些研究活动由众多出版物记录,这些出版物记录了备受尊敬的外国研究人员以及国家和欧洲研究项目,候选人是这些项目的协调员或当地科学官员。多年来,研究一直专注于物理化学领域的各种研究方向,特别是电化学,研究催化材料和与某些类型的电化学能发生器相关的材料的电化学行为。主要研究课题为: - 碱性电池活性物质二氧化锰的结构特征和电化学性质(1991-2001) - 铅酸蓄电池(1995-1999) - 超导材料研究(2003-2005) - 锂离子电池电极材料研究 - 锂离子电池阳极等高容量材料研究 - 锂离子电池阴极等高电位材料研究 - 锂硫电池电极和电解材料研究 - 锂空气电池电极和电解材料研究 - 锂离子电池工业电池特性研究 - 电化学混合系统研究:高能量 / 高功率
随着BESS规模的进一步扩大,分布式发电机(DG)之间会存在区域差异。此外,集中控制的通信网络复杂且成本高。这些限制制约了集中控制的发展。研究人员正在研究分散方法,以实现本地化控制并减少通信负担。何等[9]提出了逆功率因数控制,可以实现同步和功率共享。孙等[10]分析了功率传输特性,提出了一种fP/Q控制,可更广泛地应用于电阻-电容(RC)负载。针对并网模式,提出了一种完全分散的控制方法[11],该方法使用下垂方案控制来实现模块间的同步。然而,这些分散方法没有考虑到特性和功能,例如提供惯性控制以实现友好的电网连接并实现每个电池模块中的SOC平衡。为了实现这些目标,许多研究人员一直专注于电池特性及其在电网或可再生能源系统中的功能。