最近,Moiré系统已成为2D材料研究领域的新领域。moiré系统是指显示超晶格样图案的材料,这些模式是由2D双层结构中两个或更多层的蜂窝晶格之间的轻微错位引起的[11]。除了由于单个层之间略有晶格常数不匹配而形成的莫伊尔图案(图1A),另一种形成这些模式的方法是通过以较小的角度扭曲或旋转两个单独的层(图1B)。这种现象在扭曲的双层石墨烯中尤为明显,在扭曲的双层石墨烯中,所产生的moiré模式显着改变了材料的电子特性,最终导致以1.1°的魔法角度出现非常规超导性[12]
明确研究了直径 400 μ m 的中子辐照 (NI) GaN 肖特基势垒二极管 (SBD) 的温度相关电特性。根据 CV 测量,与原始样品相比,NI 二极管的电子浓度明显下降,表明存在热增强载流子去除效应。中子辐照会导致明显的肖特基势垒高度不均匀性,这可以通过双势垒模型进行研究。数据表明,中子辐照会对漏电流以及低频噪声水平产生微小但可测量的抑制。尽管发现了新的深能级陷阱,但温度相关的电学结果表明 GaN SBD 具有出色的抗中子辐照性能和在极端工作温度下的稳定性。
高速计算机和无线通信系统的抽象在电子市场中变得越来越流行,这些面向通信的产品需要高包装密度,时钟速率和更高的GB/s开关速度。在这项工作中表征了用于以1 GB/s运行的应用程序的多层翻转球网阵列(FCBGA)软件包。包装的电特性超出了1 GHz的必要性。在本文中,我们介绍了使用时域反射测量法(TDR)方法互连FCBGA软件包的测量和仿真结果。模拟和测量结果,以建立适当的FCBGA互连电路模型。电力网络的寄生虫可以通过TDR,矢量网络分析仪(VNA)和阻抗分析仪(IA)来测量。这项工作中生成的完整模型针对的是在商业电子应用中具有广泛用途的高速系统片(SOC)设备。关键字翻转芯片球网格阵列(FCBGA),电特性,时域反射仪(TDR),矢量网络分析仪(VNA),片上系统(SOC)1。简介半导体的国际技术路线图(ITRS)驱动程序章节介绍了未来半导体行业发展的总体SOC环境[1]。它处理大型功能块,例如RF,CPU,硬件元素(数字和模拟/混合信号块),软件元素,胶水逻辑,功能特定内核,通信接口和软件堆栈,作为可重复使用的和预验证的组件。这些组件可以插入许多不同的SOC中,这是减少必须完成新产品必须完成的低级设计工作量的一种方法[2] [3]。虽然预计通信市场将保持显着的频率线索,但高速序列方案的渗透到微处理器,ASIC和SOC市场的形式
5 电气特性参数 ........................................................................................................................... 7 5.1 绝对最大额定值 ........................................................................................................... 7 5.2 直流电特性 ................................................................................................................... 7 5.3 RF 性能 .......................................................................................................................... 8
量子点(QD)在液晶(LC)培养基中的分散可以有效地修改其介电和电光特性,这些特性在基于LC的显示以及非放置应用程序中很有用。在这里,我们报道了钙钛矿量子点(PQD)掺杂对列液晶(NLC)材料的介电性能的影响,即Zli-1565在其整个列和各向同性相。纯NLC的介电参数及其具有PQD的复合材料(0.1 wt。%,0.25 wt。%和0.5 wt。%)。与纯NLC相比,由于移动离子密度的增长,复合材料的介电介电常数(ɛʹ)和介电损耗(ɛʺ)的值增加。纯NLC的损耗因子(tanδ)的光谱峰随着PQD的添加向高频区域移动。此外,还评估了纯NLC和0.25 wt。%PQDS-NLC复合材料的温度依赖性介电参数(即最佳浓度)。此外,还评估了纯样品和0.25 wt。%复合材料的介电性各向异性和阈值电压。与纯净NLC相比,这里要注意的一点是,与纯NLC相比,清除温度(T n-I)的复合材料的清除温度(T N-I)减少了4°C。在这种PQDS-NLC复合材料上获得的结果可用于具有可调介电特征的基于NLC的电气设备。
注 : pulse 电流宽度为小于5ms的非重复单脉冲。 Pulse Test: Pulse Width = 5.0 ms, Duty Cycle 10%. 电特性 ElECTRICAL CHARACTERISTIC
摘要。Batio 3是钙钛矿结构的最重要功能材料之一,广泛用于电子工业中。但是,Batio 3的介电介电常数仍然相对较低,这极大地限制了其在具有巨大介电介电常数的超材料中的实际应用。在这项工作中,(Ba 100 x Sr X)(Ti 100 Y Zr Y)O 3复合陶瓷是通过实心烧结方法制造的。令人惊讶的是,(ba 100 x Sr x)(ti 100 y zr y)o 3复合陶瓷材料的介电性能分别依赖于A位置和B位置的Sr 2+和Zr 4+的占用。因此,通过调整SRTIO 3和BAZRO 3的掺杂量,介电介电常数为28287(65°C,1 kHz),以及在(ba 90 sr 10)(ba 90 sr 10)中的高分子分解强度为84.47 kV/cm,是在214%的范围内,是214%的13%and 13%,是214%的13%。 (BA 99 SR 1)(Ti 99 Zr 1)O 3复合陶瓷。此外,通过有限的元素模拟确定了介电介电常数显着增加的原因,并探索了复合陶瓷材料的分解机制。这项工作提供了一种构建高介电介电常数复合陶瓷的简便方法,即(BA 100 X SR X)(Ti 100 Y Zr Y)O 3复合陶瓷在电子和静电储能存储电容器方面具有广泛的应用前景。
摘要:在本文中,为了解决sige通道鳍片效果晶体管(FinFET)的外延厚度极限和高界面陷阱密度,提出了四个周期的SIGE/SI CHANNEL FINFET。高晶体质量的四个周期堆叠的SIGE/SI多层外延,每个SIGE层的厚度小于10 nm的厚度在Si基板上实现,而没有任何结构缺陷影响,通过优化其外延的生长过程。同时,SIGE层的GE原子分数非常均匀,其SIGE/SI接口很清晰。然后,通过优化其偏置电压和O 2流量,可以通过HBR/O 2/He等离子体实现堆叠的SIGE/SI FIN的垂直文件。引入了四个周期垂直堆叠的SIGE/SI FIN结构后,其FinFET设备在与常规SIGE FINFET相同的制造过程中成功制造。与传统的SIGE通道芬法特(Sige Channel FinFet)相比,它可以达到更好的驱动电流I,子阈值斜率(SS)和I ON /I OFF比率电性能,其SIGE通道的鳍高度几乎等于四个周期的SIGE /SIGE /SIGE /SI频道中的SIGE总厚度。这可能归因于四个周期堆叠的SIGE/SI FIN结构具有较大的有效通道宽度(W EFF),并且在整个制造过程中可以保持质量和表面界面性能更好。此外,首先打开堆叠的SIGE/SI通道的Si通道也可能对其更好的电气性能有所贡献。这个四个周期垂直堆叠的SIGE/SI Channel FinFet设备已被证明是未来技术节点的实用候选人。
1 苏丹王子大学数学与科学系,邮政信箱 66833,利雅得 11586,沙特阿拉伯;muaffaqnofal69@gmail.com 2 哈米德·马吉德先进聚合物材料研究实验室,苏莱曼尼大学科学学院物理系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克 3 科马尔科技大学工程学院土木工程系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克 4 苏莱曼尼大学科学学院化学系,Qlyasan Street,Sulaimani 46001,库尔德斯坦地区政府,伊拉克;hewa.ghareeb@univsul.edu.iq 5 人类发展大学健康科学学院科学医学实验室系,苏莱曼尼 46001,库尔德斯坦地区政府,伊拉克; jihad.chemist@gmail.com 6 数学与科学系,女子校区,苏丹王子大学,邮政信箱 66833,利雅得 11586,沙特阿拉伯;elhamdannoun1977@gmail.com 7 化学系,科学学院,诺拉公主大学,邮政信箱 84428,利雅得 11671,沙特阿拉伯;sialsaeedi@pnu.edu.sa * 通信地址:shujahadeenaziz@gmail.com
近年来由于人们环保意识的提高,将太阳能直接转化为电能引起了人们的极大关注。1,2有机-无机卤化物是一种光电转换材料,由于其成本较低、原料丰富,主要用于染料敏化太阳能电池(DSC),尤其是这种CH3NH3PbI3材料。3 – 6几十年来,CH3NH3PbI3材料的光伏效率已经达到近20%,但由于有机分子的挥发性和热力学不稳定性,实用性有待提高。7,8最近,基于第一性原理计算,已报道了一种稳定的六方相,其具有共面的PbI6八面体,而不是CH3NH3PbI3的角连接八面体。 9而全无机卤化物不仅弥补了有机分子热力学不稳定的特性,而且保持了较高的光伏效率。10-12大量研究表明,最理想的光伏材料具有