近年来由于人们环保意识的提高,将太阳能直接转化为电能引起了人们的极大关注。1,2有机-无机卤化物是一种光电转换材料,由于其成本较低、原料丰富,主要用于染料敏化太阳能电池(DSC),尤其是这种CH3NH3PbI3材料。3 – 6几十年来,CH3NH3PbI3材料的光伏效率已经达到近20%,但由于有机分子的挥发性和热力学不稳定性,实用性有待提高。7,8最近,基于第一性原理计算,已报道了一种稳定的六方相,其具有共面的PbI6八面体,而不是CH3NH3PbI3的角连接八面体。 9而全无机卤化物不仅弥补了有机分子热力学不稳定的特性,而且保持了较高的光伏效率。10-12大量研究表明,最理想的光伏材料具有
6。电特性.......................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................结构和维检查和维护................................................................................................................................................................... 28 9。Disclaimer .................................................................................................. 31 Appendix A ARM standard baud rate ............................................................. 32
4KTEC®PP-H是一种多功能聚丙烯的化合物,可产生令人印象深刻的物理,机械,热和电特性。它具有竞争力的价格,对化学物质和腐蚀具有高度抵抗力,即使在寒冷的环境中也保持强劲的性能。
第 2 单元:静态场中绝缘体的介电特性:极化和介电常数、非原子气体介电常数的原子解释、非原子气体介电常数的定性分析、多原子分子的定性和定量介电常数、固体和液体中的内部场、固体的电常数、铁电材料的一些特性、自发极化压电性。
这是基于量子力学和应用的计算过程。PHSHCC12T固态物理学该课程很好地了解了固体的结构及其磁性,介电和铁电特性。此处还讨论了超导性的基本面。PHSHCC12P固态物理实验室这是固态物理实验室的课程。DSE-1T经典动力学本课程涉及点粒子的经典力学,小振荡,流体动力学和相对论的特殊理论。DSE-1P经典动力学本课程提供了有关动态实验室的知识。DSE-2T核和粒子物理
菠萝以其美味的味道和营养价值而闻名,以核心,叶子和皮肤的形式产生大量废物,从而导致每年大量的积累。由于其生产的增加和潜在的环境污染,菠萝废物的有效处理已成为一个关键的挑战。本文的目的是通过将菠萝废料衍生成新的介电复合材料来挥发自然纤维。通过使用设计专家软件的优化技术实现了介电复合材料的制造过程,从而导致了值得注意的发现。然后,根据其介电性值和元素组成分析了制造材料的特性。使用矢量网络分析仪(VNA)方法测量新制造的介电材料的介电常数,而其元素组成是使用能量分散性X射线(EDX)光谱进行表征的。在本文中分析了元素组成与新制造的复合材料的介电值之间的相关性。结果,当介电复合材料由76.02%碳和22.61%的氧气组成时,获得了最高的介电常数(4.08)。相反,当材料碳含量降低到69.32%,其氧含量增加到29.81%时,该材料表现出较低的介电率值(2.87)。这种结果强调了碳在吸收和存储电磁信号中的关键作用,从而影响了材料的介电特性。总而言之,本文揭示了用于废菠萝叶的开创性用途,展示了它们的碳含量如何显着影响所得的介电复合材料的介电特性。例如,这种创新的环保材料为电子设备(例如PCB,天线和传感器)中不可回收的介电材料提供了可持续的替代方案。
摘要 — 等离子体中的尘埃粒子由于不断吸收周围环境中的自由电子和离子而获得电荷。根据尘埃的大小和数量密度,这会显著改变局部等离子体以及全局放电特性。本文介绍了当尘埃以不同的数量密度和大小被引入等离子体时,源自氩等离子体的光发射变化以及放电电特性变化的测量结果。测量放电的电子信号(包括电极电位、电流和导数信号)可以确定复阻抗,从而确定放电等效电路的变化。将实验结果与二维尘埃等离子体流体模型的数值结果进行了比较。
摘要 – 电极和神经元之间界面的电特性高度依赖于界面几何形状和其他参数。有限元模型在一定程度上可用于研究这些特性。不幸的是,这种模型在计算上非常昂贵。通过简化这些模型,可以减少计算时间。在这项工作中,我们使用基于 Krylov 子空间的模型降阶来简化电极-神经元界面的简化线性化有限元模型。这有助于在系统级耦合到 Hodgkin-Huxley 模型,并大大减少了计算时间。原始有限元模型的精度在很大程度上得以保留。关键词:神经元-电极界面,Hodgkin-Huxley 模型,模型降阶,有限元模型 1. 简介