为了选择最优化的工程布置方案,对四种工程布置方案进行了研究: 方案一:布置为地下电站,该方案的其他组成部分包括上水库、取水口建筑物、压力钢管/压力井、尾水出口和下水库,容量为1500 MW。 方案二:布置为地面电站,该方案的其他组成部分包括上水库、取水口建筑物、压力钢管/压力井、尾水出口、尾水渠和下水库,容量为1500 MW。 方案三:布置为地下电站,该方案的其他组成部分包括上水库、取水口建筑物、压力钢管/压力井、尾水出口、尾水渠和下水库,容量为810 MW。 方案四:布置为地下电站,该方案的其他组成部分包括上水库、取水口建筑物、压力钢管/压力井、尾水出口、尾水渠和下水库,容量为550 MW。这四种方案的布局有四个不同的下水库位置和三个不同的上水库位置。方案 1 和方案 2 的上水库位置相同。但是,方案 1 和方案 2 的下水库位置略有不同。方案 3 和方案 4 的项目布局有独立的项目组件,所有组件(即上水库、下水库和输水系统排列)的位置都不同。
本文介绍了一种 2 级控制器,用于管理混合储能解决方案 (HESS),用于光伏 (PV) 电厂在配电网中的电网整合。HESS 基于通过模块化电力电子柜将铅酸电池组和超级电容器组互连。将 HESS 纳入光伏电厂(而不是基于单一技术的最先进的储能系统)的动机是提供电网峰值功率削减和光伏输出功率斜坡限制服务的技术要求多种多样。2 级控制器确保协同利用两种存储技术,旨在实现 HESS 的最佳服务水平和最小的电池退化。控制器的较高级别基于数学优化问题,该问题通过存储技术的最佳调度来解决峰值功率削减目的。然后,此优化的功率设定点由管理光伏电厂输出斜坡限制的实时控制器补充。通过两个案例研究证明了 HESS 性能和相关控制器的有效性。第一篇采用 6.6 MW 光伏电站,包括 HESS 解决方案,该解决方案结合了 5.5 MWh 和 2.64 MW 铅酸电池组与 0.25 MWh 和 1.32 MW 超级电容器组。第二篇报告了类似场景的实验数据,该场景缩小到 kW 级别,并使用 HESS 的实验室规模原型。总而言之,本文提出的硬件和软件解决方案有助于实现多用途储能的可行利用,以满足可再生能源和配电系统运营商的需求。
摘要:韩国政府已宣布了净零碳排放的目标,重点是可再生能源的扩张。然而,由于基载发电机的循环能力低和可变可再生能源 (VRE) 的可变性,基载发电机的高比例和可变可再生能源 (VRE) 的比例不断增加可能会导致电力系统运行出现问题。为了保持系统可靠性,政府正计划建设抽水蓄能水电站 (PSH),为系统提供灵活性。本研究基于鸭形曲线现象和旋转备用需求的增加,评估了不同类型的 PSH:可调速 PSH (AS-PSH) 和定速 PSH (FS-PSH) 所获得的运营成本节省。在本研究中,考虑到 AS-PSH 和传统发电机的运行特性,使用混合整数规划制定了备用约束机组组合。为了考虑鸭形净负荷环境,通过风力涡轮机和光伏模块的物理模型计算了预计的 VRE 输出数据。非 PSH、FS-PSH 和 AS-PSH 建设方案的运营成本分别为 43,129.38 韩元、40,038.44 韩元和 34,030.46 韩元。造成这一差异的主要因素被确定为 AS-PSH 泵送模式的主要储备。
NTPC 拥有的电站(MW)结构百分比 煤炭 23 47,460 70.95% 气体/液体燃料 7 4,017 6.01% 水电 1 800 1.20% 可再生能源 16 1,183 1.77% 小计 47 53,460 79.93% 合资公司和子公司拥有的电站 煤炭 9 7,814 11.68% 气体/液体燃料 4 2,494 3.73% 水电 8 2,925 4.37% 可再生能源 5 192 0.29% 小计 26 13,425 20.07% 总计 73 66,885 100.00%
近年来,我国新能源储能规模化应用呈现良好的发展态势,多种储能技术在可再生能源开发、消纳、综合智能能源系统、配电网、微电网等领域得到广泛应用,在技术装备研发、示范项目建设、商业模式探索、标准体系建设等方面取得了实质性进展。目前,国内乃至国际上尚未形成统一的新能源储能统计指标体系与评价方法标准。本工作以河北南网新型电力系统建设现状为研究对象,开展新能源储能统计指标体系与评价方法研究,围绕能效指标、可靠性指标、监管指标、经济性指标、环保指标五大一级指标,构建了新能源储能电站统计指标体系;提出了层次分析法(AHP)—变异系数组合赋值法;采用基于物元拓扑法的综合评价模型对新能源储能电站发展水平进行评估,设计新能源储能统计指标体系及评价方法,为全面监测、评估和衡量新能源储能电站在运行发展过程中的综合性能与效果,优化新能源储能电站运营策略及储能技术发展推广提供科学的指标体系与评价方法。
2 https://www.gov.uk/government/collections/electricity-market-reform-capacity-market 3 有关撤销电站认证的信息,请参阅“撤销认证”
进入21世纪以来,我国发展迅速,电动汽车作为汽油车的替代逐渐进入大众的视野。目前,电动汽车换电问题正成为制约其发展的主要因素,新能源的合理开发与研究成为当务之急。微电网成为符合要求的合理产品。然而,微电网系统并非十全十美,如今的换电站集充放电储能功能于一体,与微电网互动形成能量交换。然而,如今的微电网系统面临能源供需关系紧张、负荷不稳定等问题。如何协调微电网与电动汽车换电站两个运营主体的良好互动,保证各自的利益,最终实现节能减排,利于社会发展的目标具有很强的现实意义。本文对电动汽车换电站与孤立微电网的经济调度策略进行研究。建立基于双层优化理论的经济调度模型,将换流站与孤立微电网作为两个独立的实体;基于多目标优化理论将两者整合为一个系统,研究孤立微电网的经济效益。
对于拥有 100 MW 和 15 小时的抽水蓄能电站,市场净收入从 2024 年的约 1750 万欧元开始,到 2028 年下降到约 1300 万欧元。在那一年之后,收入略有增加,到 2032 年约为 1550 万欧元,之后几乎线性下降到 2043 年的 950 万欧元。拥有 200 MW 和 7.5 小时的抽水蓄能电站也表现出同样的行为,但收入更高,因为它们将储存和释放几乎两倍的能量。
根据与Pacific Energy的这一建筑企业协议,Westgold将通过替换六个柴油发动的电站,用四个新的,高效的气体效力站来降低柴油消费,这些电站将结合可再生能源,并使用Bryah和Murdyah和Murncerison Cloessations中的太阳能和电池存储。对Westgold至关重要的是,由于更高的可再生能源整合(34%的太阳能 - 图1)和清洁燃料(气体对柴油),因此对韦斯特戈尔德的过渡包括可再生能源和气体,预计将使柴油动力发电机的碳排放量减少超过57%。