摘要 — 现代神经调节系统通常提供大量的记录和刺激通道,这降低了每个通道的可用功率和面积预算。为了在面积限制越来越严格的情况下保持必要的输入参考噪声性能,斩波神经前端通常是首选方式,因为斩波稳定可以同时改善(1/f)噪声和面积消耗。现有技术中,通过基于输入电压缓冲器的阻抗增强器解决了输入阻抗大幅降低的问题。这些缓冲器对大型输入电容器进行预充电,减少从电极吸取的电荷并有效提高输入阻抗。这些缓冲器上的偏移直接转化为电荷转移到电极,这会加速电极老化。为了解决这个问题,提出了一种具有超低时间平均偏移的电压缓冲器,它通过定期重新配置来消除偏移,从而最大限度地减少意外的电荷转移。本文详细介绍了背景和电路设计,并介绍了在 180 nm HV CMOS 工艺中实现的原型的测量结果。测量结果证实,发生了与信号无关的缓冲器偏移引起的电荷转移,并且可以通过所提出的缓冲器重新配置来缓解这种电荷转移,而不会对输入阻抗增强器的操作产生不利影响。所提出的神经记录器前端实现了最先进的性能,面积消耗为 0.036 mm2,输入参考噪声为 1.32 µV rms(1 Hz 至 200 Hz)和 3.36 µV rms(0.2 kHz 至 10 kHz),功耗为 13.7 µW(1.8 V 电源),以及 50 Hz 时的 CMRR 和 PSRR ≥ 83 dB。
同时,能量结构域中的高分辨率X射线光谱也可以提供对分子系统中超快染色器过程的有用见解。使用单色同步加速器X射线辐射,可以在分子中对特定原子核壳的共振激发。核心兴奋状态的寿命因几个飞秒而异,具有激发能量的相对较浅的核心孔高达1 keV,直到具有较高激发能的深核孔的attosentime量表。通过发射X射线光子或螺旋钻电子的发射在核心激发态的寿命内,可以作为探测分子在同一时间尺度上发生的任何动力学过程的探测。这是“核心时钟”光谱(CHC)的基本概念。6关于
摘要:我们在拓扑绝缘子(TI)BI 4 TE 3上合成和光谱研究了单层C 60。此C 60 /BI 4 TE 3异质结构的特征是在BI 4 TE 3的A(9×9)细胞(9×9)细胞上的小说(4×4)C 60上层结构中出色的翻译顺序。C 60 /BI 4 TE 3的角度分辨光发射光谱(ARPE)表明,ML C 60在室温下接受Ti的电子,但在低温下没有电荷转移。通过拉曼光谱,光致发光(PL)和C 60 /BI 4 TE 3的计算进一步研究了这种依赖温度的掺杂。在低温下,拉曼光谱和PL显示C 60相关信号的强度急剧增加,这表明过渡到旋转有序状态。计算解释了C 60吸附到BI 4 TE 3表面缺陷的电荷转移。电荷转移的温度依赖性归因于C 60的方向顺序。由于旋转运动的冻结,C 60的电子亲和力在低温下增加。关键字:拓扑绝缘子,富勒烯,角度分辨光发射,拉曼,光致发光
带有线性电子色散的材料通常具有高载体迁移率和异常强的非线性光学相互作用。在这项工作中,我们研究了一种此类材料的(THz)非线性动力学HGCDTE,具有电子带分散体的高度依赖于温度和化学计量。我们展示了带隙,载体浓度和带状形状如何共同确定系统的非线性响应。在低温下,齐纳尔隧道的载体产生占主导地位,以减少整体传输的降低。在室温下,quasiballistic电子动力学驱动最大的观察到的非线性光学相互作用,从而导致透射率增加。我们的结果证明了这些非线性光学特性对电子分散和载体浓度的微小变化的敏感性。
抽象的摩擦式摩擦或接触材料会导致电荷转移时,在许多领域都无处不在,并且已经详细研究了几个世纪。尽管如此,对摩洛电性的完整描述仍然难以捉摸。在这里,我们分析了金属垂体和半导体之间的接触,包括来自半导体耗尽区的贡献以及由于阿森特式接触处的应变梯度而产生的挠性偏振。然后讨论和计算涉及的电荷转移涉及的免费费用。因此,我们开发了一个定量模型,用于摩擦电荷转移,该模型详细介绍了如何使用接触参数的电荷传输量表,耗尽和挠性性的相对影响,并且与多种类别的TriboElectric实验中的各种趋势一致。
推荐引用 推荐引用 Kiseleva, N., Busko, D., Richards, BS, Filatov, MA, Turshatov (2020). 使用无重原子敏化剂的电荷转移态荧光作为自参考来确定上转换量子产率。《物理化学快报》11,XXX.,第 6560–6566 页。doi:10.1021/acs.jpclett.0c01902
缺乏对金属 - 触发器界面处等离子体介导的电荷转移的详细机械理解,严重限制了有效的光伏和光催化装置的设计。与直接的金属到 - 触发器界面电荷转移相比,由金属中等离子体衰变产生的热电子产生的热电子的间接转移的相对贡献是相对的贡献。在这里,当对共振激发时,我们证明了从金纳米棒到氧化钛壳的总体电子转移效率为44±3%。我们证明,其中一半源自通过激发等离子的直接界面电荷转移。我们能够通过多模式的频率分辨方法来区分直接和间接途径,通过单粒子散射光谱和具有可变泵波长的时间分辨瞬态吸收光谱测量均相等离子体线宽。我们的结果表明,直接等离子体诱导的电荷转移途径是提高热载体提取效率的一种有希望的方法,该方法主要通过非特异性加热而导致的金属内在衰减。
摘要:光电半导体设备中的创新是由对如何移动电荷和/或激子(电子 - 孔对)的基本理解驱动的,例如用于做有用工作的指定方向,例如制造燃料或电力。二维(2D)过渡金属二甲化物(TMDCS)和一维半导体的单壁碳纳米管(S-SWCNT)的多样性和可调性和光学性能使它们跨越了跨越HersoIftf的基本量子研究。在这里,我们演示了混合维度2D/1D/2D MOS 2/swcnt/WSE 2杂型词,该杂质可实现超快速光诱导的激发激素离解,然后进行电荷扩散和缓慢的重组。重要的是,相对于MOS 2/SWCNT异质数,异位层的载体产量是两倍,并且还展示了分离电荷克服层间激子结合能的能力,可以从一个TMDC/SWCNT界面扩散到另一个2D/1D界面,从而在COULOMBINDING INDENDINCLING INDEND INDENCE中分散。有趣的是,杂体似乎还可以有效地从SWCNT到WSE 2,这在相同准备的WSE 2 /SWCNT Heterobilayer中未观察到,这表明增加纳米级三层的复杂性可能会改变动态途径。我们的工作提出了“混合维度” TMDC/SWCNT的杂体,这是纳米级异位方面的载体动力学机械研究的有趣模型系统,以及用于高级光电系统中的潜在应用。关键字:过渡金属二分法,电荷转移,异质界,碳纳米管,激子O
摘要:磁接近性诱导的磁性磁性在过去十年中刺激了密集研究。然而,到目前为止,在相关异质结构中LNO层中的磁顺序尚未达成共识。本文报告了(111) - 定向LNO/LAMNO 3(LMO)超级晶格的分层铁磁结构。发现,超级晶格的每个时期都由一个绝缘的LNO间相相(厚度五个单位细胞,〜1.1 nm),一个金属LNO-INNER相位,是一个金属LNO-INNER相,一个导电性LMO-Interflacial相(厚度较差,厚度为3.0.7 nm),以及一个绝缘的LMO-inners nersners-nernernnernernernnernernernnernernernnernernernnernernnernernnernernernnernernernnernernernnernernernnernernnernernernnernernnernernnernernnernernnernernnernernnerners nernernnerners nerners nernernnernerners。所有这四个阶段都是铁磁性的,显示出不同的磁化。MN到Ni Interlayer电荷转移负责层次磁性结构的出现,这可能会在LNO/LMO界面上引起磁相互作用,并在LMO间接层内的双重交换。这项工作表明接近效应是操纵复杂氧化物的磁态和相关特性的有效手段。关键字:LANIO 3,LAMNO 3,接近效应,电荷转移,分层铁磁结构
>LaNiO/mi>mn>3/mn>/msub>mo>//mo>msub>mi>CaM nO/mi>mn>3/mn>/msub>/math> 铁磁界面 JR Paudel,M. Terilli,T.-C。吴、JD Grassi、AM Derrico、RK Sah、M. Kareev、F. Wen、C.