我们介绍了一种电隔离的“浮动”双层 GaAs 量子阱 (QW) 设计,其中施加可控且高度可重复的大栅极电压会诱导电荷,这些电荷在移除栅极电压后仍被捕获在双层中。在较小的栅极电压下,双层通过厚绝缘屏障与外部电极完全电隔离。这种设计允许完全控制两个耦合的 2D 电子系统的总密度和差分密度。浮动双层设计提供了一种独特的方法来研究无法通过简单的传输测量进行研究的系统。它还提供了测量层间电荷转移的能力,即使 2D 系统的平面电阻率不同。我们测量了 QW 双层的电容和层间隧穿光谱,并独立控制顶层和底层电子密度。我们的测量显示,在 v T ¼ 1 时,层间隧穿电流大大增强,这是强层间关联双层系统激子凝聚的标志。由于各个层的密度完全可调,浮动双层 QW 系统提供了一个多功能平台来获取有关电子双层系统中量子相的先前无法获得的信息。
摘要:磁接近性诱导的磁性磁性在过去十年中刺激了密集研究。然而,到目前为止,在相关异质结构中LNO层中的磁顺序尚未达成共识。本文报告了(111) - 定向LNO/LAMNO 3(LMO)超级晶格的分层铁磁结构。发现,超级晶格的每个时期都由一个绝缘的LNO间相相(厚度五个单位细胞,〜1.1 nm),一个金属LNO-INNER相位,是一个金属LNO-INNER相,一个导电性LMO-Interflacial相(厚度较差,厚度为3.0.7 nm),以及一个绝缘的LMO-inners nersners-nernernnernernernnernernernnernernernnernernernnernernnernernnernernernnernernernnernernernnernernernnernernnernernernnernernnernernnernernnernernnernernnernernnerners nernernnerners nerners nernernnernerners。所有这四个阶段都是铁磁性的,显示出不同的磁化。MN到Ni Interlayer电荷转移负责层次磁性结构的出现,这可能会在LNO/LMO界面上引起磁相互作用,并在LMO间接层内的双重交换。这项工作表明接近效应是操纵复杂氧化物的磁态和相关特性的有效手段。关键字:LANIO 3,LAMNO 3,接近效应,电荷转移,分层铁磁结构
摘要:本综述着重于微生物生物燃料细胞的开发,以证明对生物电子设备开发的相似原理如何应用。可以在设计微生物生物燃料细胞时利用基于微生物的成熟生物传感器的低特异性,从而使它们能够消耗更广泛的化学燃料。电荷转移效率是开发生物燃料细胞时最具挑战性和最关键的问题之一。纳米材料和特定的氧化还原介质被利用以促进生物材料和生物燃料细胞电极之间的电荷转移。导电聚合物(CP)的应用可以提高生物燃料细胞的效率,而CPS非常适合固定酶,在某些特定情况下,CPS可以促进电荷转移。此外,生物相容性是植入生物燃料电池开发过程中的重要问题。因此,在本综述中讨论了与微生物进行聚合物的生物相容性相关方面。概述了修饰细胞壁/膜并提高电荷转移效率和对生物燃料细胞设计的适用性的方法。
摘要:本综述着重于微生物生物燃料细胞的开发,以证明对生物电子设备开发的相似原理如何应用。可以在设计微生物生物燃料细胞时利用基于微生物的成熟生物传感器的低特异性,从而使它们能够消耗更广泛的化学燃料。电荷转移效率是开发生物燃料细胞时最具挑战性和最关键的问题之一。纳米材料和特定的氧化还原介质被利用以促进生物材料和生物燃料细胞电极之间的电荷转移。导电聚合物(CP)的应用可以提高生物燃料细胞的效率,而CPS非常适合固定酶,在某些特定情况下,CPS可以促进电荷转移。此外,生物相容性是植入生物燃料电池开发过程中的重要问题。因此,在本综述中讨论了与微生物进行聚合物的生物相容性相关方面。概述了修饰细胞壁/膜并提高电荷转移效率和对生物燃料细胞设计的适用性的方法。
抽象的摩擦式摩擦或接触材料会导致电荷转移时,在许多领域都无处不在,并且已经详细研究了几个世纪。尽管如此,对摩洛电性的完整描述仍然难以捉摸。在这里,我们分析了金属垂体和半导体之间的接触,包括来自半导体耗尽区的贡献以及由于阿森特式接触处的应变梯度而产生的挠性偏振。然后讨论和计算涉及的电荷转移涉及的免费费用。因此,我们开发了一个定量模型,用于摩擦电荷转移,该模型详细介绍了如何使用接触参数的电荷传输量表,耗尽和挠性性的相对影响,并且与多种类别的TriboElectric实验中的各种趋势一致。
图4。MOS 2 /WS 2杂波的压力依赖性电荷和能量转移。(A-B)(a)导带和(b)价带的电荷密度是沿平面方向压力的函数。(c)示意图证明了随着压力增加的电荷密度和电荷转移。直和波浪箭分别表示电荷转移和辐射衰减。(d)MOS 2 / WS 2异质结构的带状电荷密度,与MOS 2(底部) / WS 2(顶)异质结构的侧视图叠加。p1,p2和p3是代表性压力点,在电荷或轨道对传导带中的显着变化分别对应于〜13 GPA,〜22 GPA和〜30 GPA。
摘要:DNA碱基三重态的短距离电荷转移在生物电子设备中具有广泛的应用前景,用于识别DNA碱基和临床诊断,其开发的关键是了解短距离电子动力学的机制。然而,追踪在DNA碱基三胞胎的短距离电荷传输中如何传递电子仍然是一个巨大的挑战。在此,通过从头算分子动力学和eHrenfest动力学,胸腺氨酸 - 腺苷 - 胸腺氨酸(TAT)电荷转移过程的核电子介入成功地成功模拟了。结果表明,TAT的电子转移具有10 fs的振荡现象。电荷密度差证明,在50 fs时,电荷转移比例高达59.817%。氢键的峰位置定期在-0.040和-0.056之间闪烁。时间依赖性的Marcus – Levich-Jortner理论证明,核与电子之间的振动耦合会在TAT中诱导相干电子转移。这项工作提供了DNA碱基三重态的短距离相干电子转移的实时证明,并为新型生物学探针分子的设计和开发建立了理论基础。
摘要:在两个化学上相同但具有电子不同的过渡金属二进制(TMDS)之间的连接的超快载体动力学仍然很大程度上未知。在这里,我们采用时间分辨的光发射电子显微镜(TR-PEEM)来探测单层 - 型 - 次要人士(1L-ML)WSE 2连接的超快载体动力学。记录了连接的各个组件记录的tr-peem信号揭示了1L-和7L-WSE 2的子PS载体冷却动力学以及在1L-WSE 2上发生的几个PS激子 - 激子 - 激子 - 激子 - 激子。,我们观察到超高界面孔(H)在约0.2 PS时尺度上从1L--至7L-WSE 2转移。在7l-wse 2中,由于载体重组的重组在约100 ps的时间尺度上,其产生的过量H密度衰减。让人联想到耗尽区域的行为,TREEM图像揭示了H密度在7L-WSE 2界面上的积累,衰减长度约为0.60±0.17μm。这些电荷转移和重组动态与从头量量子动力学一致。计算的轨道密度揭示了电荷转移是从延伸到1L和ML区域的基底平面到位于ML区域上的上层平面。这种电荷转移模式与分层材料的化学均匀连接相关,并且构成了另一种载流子停电途径,应在对其ML旁边发现的1L-TMDS的研究中考虑,这是剥落样品中常见的情况。关键字:过渡金属二分法,外侧连接,界面电荷转移,时间分辨的光发射电子显微镜,超快光谱,非绝热的摘要分子动力学L
Sullivan,27 Dempsey,28 Ishitani,29和其他30-32岁,就其地面和激发态特性研究了不同的rhenium(I)羰基配合物。在这些配合物的设计中,持续的挑战是它们的吸收扩展到电磁谱的可见和近红外(NIR)区域。我们已经表明,通过在配体框架的远程位置引入像NME 2这样的强有力的捐赠组,激发状态的角色发生了变化(例如,在复合物1a和1b之间,方案1)从金属到配体电荷转移(MLCT)到内聚电荷转移(ILCT)。这导致了Ca的红移。100 nm的吸收最大值和B 200倍的寿命增加,伴随着B灭绝系数增加了5倍。24
新型合成有机共晶体电荷转移复合物与草酸与草酸的分子相互作用和光谱表征:探索其光催化活性,实时比色化学传感器,生物学活性和计算研究。