蛋白质中的电荷转移反应对生命很重要,例如修复DNA的光溶酶中,但结构动力学的作用尚不清楚。在这里,使用飞秒X射线晶体学,我们报告了电子沿着果蝇(6-4)光解酶中电子四个保守的色氨酸链传递时发生的结构变化。在Femto和Picsecond延迟时,第一个色氨酸对黄素的光摄影导致在关键的天冬酰胺,保守的盐桥和附近水分子的重新安排上引起定向的结构反应。我们检测到电荷诱导的结构变化,接近第二个色氨酸到20 ps的第二个接近的结构变化,将附近的蛋氨酸鉴定为氧化还原链中的活跃参与者,从第四次色氨酸附近的20 ps鉴定。光解酶经历了其结构的高度定向和仔细的定时适应。这质疑马库斯理论中线性溶剂响应近似的有效性,并表明进化已经优化了快速蛋白波动以进行最佳电荷转移。
氧化物异质结构中的界面电荷转移产生了丰富的电子和磁现象。设计异质结构,其中一个薄膜成分表现出金属-绝缘体转变,为静态和动态控制此类现象开辟了一条有希望的途径。在这项工作中,我们结合深度分辨的软 x 射线驻波和硬 x 射线光电子能谱以及偏振相关的 x 射线吸收光谱,研究了 LaNiO 3 中的金属-绝缘体转变对 LaNiO 3 /CaMnO 3 界面处电子和磁态的影响。我们报告了在金属超晶格中直接观察到的界面 Mn 阳离子的有效价态降低,该超晶格具有高于临界的 LaNiO 3 厚度(6 个晶胞,uc),这是由流动的 Ni 3 deg 电子向界面 CaMnO 3 层中的电荷转移促成的。相反,在厚度低于临界值 2u.c. 的 LaNiO 3 绝缘超晶格中,由于界面电荷传输受阻,整个 CaMnO 3 层中观察到 Mn 的有效价态均匀。切换和调节界面电荷传输的能力使得能够精确控制 LaNiO 3 /CaMnO 3 界面上出现的铁磁状态,因此对下一代自旋电子器件的未来设计策略具有深远的影响。
在14 GPA的压力下,最近在LA 3 Ni 2 O 7-δ中发现了超导性特征,超导过渡温度约为80 K,引起了相当大的关注。研究电子结构的一个重要方面是辨别La 3 Ni 2 O 7-δ的电子接地状态与Cuprate超导体的母体状态(一种具有远距离抗铁磁性的电荷转移绝缘子)。通过X射线吸收光谱法,我们揭示了氧配体对Ni离子的电子接地态的影响,显示出类似于丘比特的电荷转移性质,但具有独特的轨道结合。此外,在LA 3 Ni 2 O 7-δ纤维中,我们使用谐振X射线散射测量值检测到Ni L吸收边缘的超晶格反射(1/4、1/4,L)。对共振的进一步检查表明,反射起源于Ni d轨道。通过评估反射的方位角依赖性,我们确认存在截面抗铁磁性旋转顺序和具有相同周期性的电荷的各向异性。我们的发现揭示了这两个成分之间的微观关系,在反射的散射强度的温度依赖性中。这项研究丰富了我们在高压下LA 3 Ni 2 O 7-δ中高温超导性的理解。
B. 激发导致零级激子态,每个点由两个空穴态(h1 和 h2,蓝色条)和一个电子态(e,红色条)组成。可以构建 8 个激子态,4 个局部激子,即 h1eA(顶行),其中空穴-电子对位于同一点上(激发用直线表示)和 4 个电荷转移,即 h1A-eB,(CT 态,底行),其中空穴和电子位于不同的点上(激发用曲线表示)。C. 异质结的本征激子态
全固态电池是提高电池性能和安全性的有前途的技术,它具有固体锂离子导电电解质(SE)。全固态电池可以实现锂金属负极,显著提高可实现的体积和重量能量密度。[10] 然而,全固态电池仍然面临一些限制。其中包括稳定性问题、众多固-固界面处的高电荷转移阻力、SE 的离子电导率不足以及正极设计未优化。[11,12]
浆液电极通过将电解质中的活性材料颗粒加热而不是将其固定到当前的收集器中,从而提供了解决方案。这些颗粒在电场中移动,促进电气板之间的电荷转移。这种方法在小规模的低雷诺德数电池中显示出希望,但其大规模行为 - 尤其是湍流中的电子效应仍然知之甚少。了解在电场下粘度的变化对于扩大这些电池,尤其是在湍流方案中至关重要。
具有双自由基特征的多环芳杂环 (PAH) 的分子拓扑合成源于分子内偶联的突破。在此,我们报道了选择性 Mn(III)/Cu(II) 介导的 C − P 和 C − H 键断裂,以获得具有螺旋或平面几何形状和不同阳离子电荷的坚固的供体稠合磷鎓。前一种螺旋结构包含一个共同的磷酸[5]螺旋化受体和不同的芳胺供体,而后一种平面结构包含一个磷酸[6]螺旋化和相同的供体。这些前所未有的供体-受体 (D − A) 对表现出独特的拓扑依赖性光电特性。折叠螺旋自由基中心具有极端的电子缺陷状态和空间隔离,具有高度的双自由基特性 (y 0 = 0.989)。此外,巧妙的电荷转移 (CT) 和局部激发 (LE) 跃迁成分促进了不同溶剂中不同的杂化局部和电荷转移 (HLCT),赋予了 0.78 eV (~217 nm) 的最大发射带隙变化。阳离子发射也可以通过拓扑定制和极性依赖的 HLCT 从蓝色区域调整到近红外区域,这可以在兼容的手性薄荷醇基质中输出额外的圆偏振发光,同时提高量子效率并保留深红色辉光。值得一提的是,原子精确的 Mn(III) 卤化物已被史无前例地捕获并确定用于 C-P 键活化。
迫切需要有效的储能设备,对金属离子电池的研究和开发有希望的阳极材料非常关注。通过密度功能研究,我们首次成功地预测了P 3 S和C 3 S单层的电化学性能,可以在碱金属(LI,LI,NA和K)电池中使用。我们的研究研究了原始的单层能量,动力和热稳定性。原始纳米片的电子结构表现出宽间隙的半导体。单层上的单个金属化后,复合系统变为金属。电荷密度差(CDD)分析表明,电荷转移是从碱金属原子到P 3 S和C 3 S单层的,而Bader电荷分析量化了电荷转移量。我们已经分析了2D结构中单个Adatom扩散的容易分散。一个例子是k上k的扩散,c 3 s的较低屏障值为0.06 eV,并且似乎无障碍物。此外,我们预测的复合系统报告了相当大的理论存储能力(C);例如,六边形K adsorbed C 3 s显示存储容量为1182.79 mA h g -1。估计的开路电压(OCV)值表明C 3 S单层有望用于LI-,Na-和K-ION电池的阳极材料,而P 3 S单层单层适合作为LI-,Na-和K-ion电池的阴极材料。
简介。有机半导体的开发。有机和无机光电技术的比较。有机光子学和电子市场开发。立陶宛有机光电技术的开发。有机光电学中使用的材料。设备的典型多层结构典型的有机半导体。主要的技术:小分子,聚合物。多功能材料。分子玻璃。电荷分离材料。发射器:单线,三重态。分子复合物。非线性光学分子。其他材料。有机层。纯化材料的方法。真空中的蒸发。从解决方案中铸造。获得不溶性层。合金。通过真空蒸发和铸造方法获得多层结构。Langmuir-Blogett技术。自组织层。结构层。寿命和有机层降解的问题。封装。有机共轭分子的特性。分子轨道,轨道杂交。分子电子和振动状态。势能共配置图。分子中的激发过程。环境影响,分子复合物,激发转移过程。fiorster,敏捷能量传递。有机材料和聚合物中激发激发的基本知识。缺陷状态。Frenkel的激子。多元中激子的状态。激子 - 振动相互作用。电荷转移激子。激子北极星和极化。激子运输和放松过程。有机层和晶体中的电荷载体状态。光学和绝热带隙。载体带,载体状态密度。聚合物状态。电荷转移现象。载体迁移率,其温度和电场依赖性。
壳聚糖涂层,源自甲壳类动物壳废物,具有固有的生物相容性和生物降解性,使它们适合各种生物医学和环境应用,包括电化学生物透镜。其胺和羟基官能团为化学修饰提供了丰富的位点,以增强电荷转移动力学并提供出色的粘附,从而实现了稳健的电极涂层接口进行电分析。本研究探讨了静电驱动的化学相互作用和交联密度的作用,该密度源自不同壳聚糖(CS)和戊二醛(GA)浓度在这方面的作用。研究阴离子([Fe(CN)6] 3 - /4-),中性(FCDM 0 / +)和阳离子([RU(NH 3)6] 2 + /3 +)氧化还原探针突显了通过含有正气收费路径的壳聚糖链与Dft分析计算的壳聚糖链与壳聚糖链的影响。我们的研究揭示了适当的CH与GA比如何对交叉连接功效和结果电荷转移动力学具有较大的影响,这主要是由于电触电驱动的,这是由于电动驱动的负电荷的亚烯酰胺离子朝向带阳性充电的阳性电荷载荷的外壳粒的迁移而促进了多达20倍分析的预浓度。值得注意的是,表面工程方法允许[Fe(CN)6] 4-检测限制的两个数量级增强,从裸机的0.1 µm到适当的水凝胶修饰后,裸露的GCE降至0.2 nm。