本文从理论和实验两个方面研究了 C 4 + 与氢原子碰撞的电荷转移过程。我们的理论研究基于电子-核动力学方法,该方法用于研究态间和总电子捕获截面的贡献。我们的理论结果与 C 4 + 与氢原子碰撞的绝对总截面的实验测量结果相辅相成,该测量采用离子原子合并束技术,在橡树岭国家实验室的改进设备中以相对碰撞能量 0.122–2.756 keV/u 进行。我们发现,在实验结果中,在碰撞能量为 0.5 keV/u 附近观察到的结构是由于 3 ℓ 捕获截面、电子和核动力学的耦合以及实验配置中的接受角的综合贡献。我们还报告了 C 4 + 的动能损失和停止截面。我们发现,C 4 + 在相对碰撞能量介于 0.1 至 10 keV / u 之间时会获得能量,最大值为 ∼ 1 keV / u。我们的理论研究表明,要与合并光束实验结果进行比较,必须考虑合并路径长度对仪器的影响。
Hammett 对功能化二酮吡咯并吡咯 (DPP) 体系中取代基效应的分析:光电特性和分子内电荷转移效应 Gabriel Monteiro-de-Castro; a Itamar Borges Jr. a,b,* Instituto Militar de Engenharia (IME),Praça Gen. Tibúrcio 80,里约热内卢,RJ,22290-270,巴西。 a Departamento de Química, IME b Programa de Pós-Graduação em Engenharia de Defesa, IME * 电子邮件:itamar@ime.eb.br 摘要 二酮吡咯并吡咯 (DPP) 系统在不同的有机电子器件中具有广阔的应用前景。在这项工作中,我们研究了 20 种不同的取代基对 DPP 基衍生物作为有机光伏 (OPV) 器件中的供体 (𝐷) 材料的光电特性的影响。为此,我们采用了 Hammett 理论,该理论量化了给定取代基的电子供体或吸电子特性。基于机器学习 (ML) 的 𝜎 # , 𝜎 $ , 𝜎 #
胶体半导体量子点/石墨烯范德华 (vdW) 异质结利用量子点 (QDs) 增强的光物质相互作用和光谱稳定性以及石墨烯中卓越的电荷迁移率,为增益或外部量子效率高达 10 10 的非制冷红外光电探测器提供了一种有前途的替代方案。在这些 QD/石墨烯范德华异质结构中,QD/石墨烯界面在控制光电过程(包括激子解离、电荷注入和传输)方面起着关键作用。具体而言,范德华界面处的电荷陷阱会增加噪声、降低响应度和响应速度。本文重点介绍了我们在设计范德华异质结界面以实现更高效的电荷转移、从而获得更高的光响应度、D* 和响应速度方面的最新进展。这些结果表明范德华异质结界面工程在 QD/石墨烯光电探测器中的重要性,这可能为低成本、可印刷和灵活的红外探测器和成像系统提供有前途的途径。
摘要:等离子体诱导光催化是一种降低传统热分解温度的有效方法,已被用于甲烷脱氢。本文,我们利用时间相关密度泛函理论,通过分子轨道洞察,探讨了等离子体诱导甲烷在四面体 Ag 20 纳米粒子上解离的微观动力学机制。我们巧妙地通过 Hellmann-Feynman 力建立了化学键和分子轨道之间的关系。时间和能量分辨的光载流子分析表明,由于 Ag 纳米粒子和 CH 4 轨道的强杂化,在低激光强度下,从 Ag 纳米粒子到甲烷的间接热空穴转移主导光反应,而间接和直接电荷转移共存,促进甲烷在强激光场中的解离。我们的研究结果可用于设计新型甲烷光催化剂,并强调了分子轨道方法在吸附质-底物体系中的广阔前景。关键词:局域表面等离子体、甲烷脱氢、光载流子动力学、分子轨道洞察、实时时间相关密度泛函理论
摘要。在这项研究中,使用直接的微波辅助技术合成氧化锌纳米颗粒。结果表明,合成的纳米颗粒是六边形的wurtzite Zno纳米颗粒,其结晶石尺寸为6.76 nm,如通过生理化学方法确定。它揭示了在不同的增强型,是不规则的,球形的海绵状结构。使用傅立叶变换红外光谱法,已经观察到ZnO表面上的相应官能团。根据吸收测量值,直接光带隙约为3.29 eV。光致发光光谱可通过寻找红色发射和蓝色带缘发射来检测ZnO晶格中的晶体缺陷。进行了对氧化锌纳米颗粒的抗腐蚀能力的研究,该研究表明,当用镁(MG)底物涂有颗粒时,颗粒具有有益的特征。这些材料被评估,具有有或没有保护性涂层的腐蚀性。结果表明,在不同的电解质条件下,涂层显着提高了保护速率。与裸露的MG板相比,当ZnO纳米颗粒涂覆时,电荷转移电阻R CT增加。
垂直堆叠的范德华(VDW)异质结构具有独特的电子,光学和热特性,可以通过扭曲角工程来操纵。然而,双层界面处的弱语音耦合施加了基本的热瓶颈,以实现未来的二维设备。使用超快电子衍射,我们直接研究了照片诱导的MOS 2 /WS 2中的非平衡声子动力学,在4°扭曲角度和WSE 2 /Mose 2的旋转角度为7°,16°,16°和25°和25°。,我们确定了一个层间传热通道,其特征时间尺度为约20个皮秒,假设初始内部内部热化的分子动力学模拟比分子动力学模拟快约一个数量级。涉及声子散射的原子计算表明,此过程起源于初始层间电荷转移和散射之后的非热声子种群。我们的发现通过调整非平衡声子种群来提出VDW异质结构中热管理的途径。
等离子体增强光催化已成为一种很有前途的太阳能-化学能转换技术。与孤立或无序的金属纳米结构相比,通过控制单个纳米组件的形态、成分、尺寸、间距和分散性,具有耦合结构的等离子体纳米结构阵列可产生强大的宽带光收集能力、高效的电荷转移、增强的局部电磁场和大的接触界面。尽管金属纳米结构阵列已在各种应用方面得到广泛研究,例如折射率传感、表面增强光谱、等离子体增强发光、等离子体纳米激光和完美光吸收,但表面等离子体共振 (SPR) 与增强光催化之间的联系仍然相对未被探索。在本研究中,我们概述了从零维 (0D) 到三维 (3D) 的等离子体纳米结构阵列,以实现高效的光催化。通过回顾等离子体纳米结构阵列在太阳能驱动化学转换中的基本机制、最新应用和最新发展,本研究报告了等离子体纳米结构集成用于等离子体、光子学、光电检测和太阳能收集领域的功能设备的最新指导。
长波长发光材料的严重猝灭是制约OLED发展的重要瓶颈,例如Zhang等报道了一系列新型DA型橙色和红色荧光材料,其外量子效率(EQE)仅为3.15%,发射峰在592nm,而外量子效率(EQE)仅为2.66%,发射峰在630nm。16以三苯胺和N,N-二苯基苯胺为结构发光材料的橙色器件的最大EQE较低,为3.42%。17Yang等也报道了一种以吡啶-3,5-二腈为核心的TADF橙色发光材料,其电致发光(EL)峰值在600nm,其最大EQE为9.8%,18远低于蓝色和绿色器件。具有特色 DA 结构的 HLCT 基材料可以通过快速“热激子”通道从高位三线态 T m 实现逆向系统间窜改 (RISC) 到高位单线态 S n 。由于特殊的杂化局域电子 (LE) 和电荷转移 (CT) 激发态,这种独特的特性使 HLCT-OLED 具有高 EQE 和不明显的效率下降。19
作为能量转换技术的一个新兴分支,摩擦纳米发电机 (TENG) 开辟了一条有效利用各种机械能用于供电和/或传感的全新途径。自 2012 年发明以来,TENG 在材料合成和改性、结构设计到性能优化、电源管理和应用探索等各个方面都经历了蓬勃发展和革命性的发展。与有机太阳能电池和有机发光二极管相比,TENG 是一种独特的技术,开辟了使用聚合物材料 (PM) 收集机械能的领域。到目前为止,凭借摩擦过程中出色的电荷转移和捕获能力,各种类型的 PM 已被开发并用作摩擦电材料,以实现高性能 TENG。本文重点介绍了 PM 在 TENG 技术中的应用和开发,并首先总结了目前报道的能量收集 TENG 中经常采用的主要 PM。其次,介绍并重点介绍了几种新型 TENG 中用于特殊或特定能量收集环境的 PM。最后,展望了面向 TENG 技术的高性能 PM 的发展前景和挑战,并希望这些前景和挑战对未来的研究有所启发。
未来的分子微电子学要求设备的电子电导率可调,而不会损害分子电子特性的电压控制。本文,我们报告了在半导体聚苯胺聚合物或极性聚-D-赖氨酸分子薄膜与两种价态互变异构复合物之一(即 [Co III (SQ)(Cat)(4-CN-py) 2 ] ↔ [Co II (SQ) 2 (4-CN-py) 2 ] 和 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ])之间创建界面的影响。利用密度泛函理论指导的 X 射线光发射、X 射线吸收、逆光发射和光吸收光谱测量来识别电子跃迁和轨道。除了结合能和轨道能级略有改变外,底层基底层的选择对电子结构影响不大。在 [Co III (SQ)(Cat)(3-tpp) 2 ] ↔ [Co II (SQ) 2 (3-tpp) 2 ] 中存在一个显著的未占据配体到金属电荷转移态,该态对 Co II 高自旋态中聚合物和互变异构复合物之间的界面几乎不敏感。