化石燃料消耗的不断增长加上全球对环境的担忧迫使人们快速发展可持续能源。[1] 为了克服这一严峻形势,人们投入了巨大的努力来探索电化学转换和存储装置,如水分解、氮和二氧化碳的电化学还原、燃料电池、可充电电池和电合成技术。[2] 其中,水分解尤其令人感兴趣,因为它可以与可再生风能和太阳能轻松结合,生产高纯度的氢燃料。[3,4] 然而,水分解的氢析出反应 (HER) 和氧析出反应 (OER) 在热力学上都是上坡形且动力学缓慢,这不可避免地降低了整体的能源效率。[5] 为了解决这个问题,高效的电催化剂对于降低能量壁垒和加速 OER 和 HER 反应是必不可少的。目前,许多过渡金属基化合物已被证明是水分解的有前途的电催化剂。 [6]
节省量取决于太空运输方法和假设;此前的火星齿轮比计算显示,仅节省 7.5 公斤 火星上升阶段的推进剂生产可节省 25,000 公斤质量 = 发射至低地球轨道的重量为 187,500 至 282,500 公斤
• 组合/集成节点以展示连接时的价值(总和大于各个部分的组合) • 增加核心实验室之间的协作 • 为 EMN 实验室提供核心研究,而不仅仅是项目支持 • 第 1 阶段可衡量的目标:确认可以验证非原位表征方法对设备性能和耐用性的适用性
多孔传输层是低温电解装置的重要组成部分,例如质子交换膜水电油夹或阴离子交换膜水电油层。PTL对细胞性能具有显着影响,因为它们的大量电阻会影响欧姆电阻,它们的接触电阻会影响电极性能,并且它们的结构会影响到细胞的液体流动,这可能会导致大规模传播损失。为了提高细胞性能,PTL的优化至关重要。应使用标准化协议来充分比较来自不同机构的PTL。此方法将详细介绍使用四线设置来测量PTL电阻的标准化协议,并将详细介绍使用毛细管流孔径测量PTL的孔隙率和水接触角的过程。
本演讲是每月H2IQ小时的一部分,该小时强调了美国能源部氢气和燃料电池技术办公室(HFTO)在能源效率和可再生能源(EERE)办公室内资助的研发活动。
• PEM 电解领域的全球市场和技术领导者 • Nel ASA 的美国子公司,总部位于挪威奥斯陆 • 所有制造均在美国康涅狄格州沃灵福德完成 • 100 名员工,100,000 平方英尺(9,300 平方米)工厂 • 经过 cTÜVus 和 TÜV 的 CE 标志认证 • 在 75 多个国家安装了 2,700+ PEM 系统 通过 ISO 90001 认证
提议的主题与“清洁燃料材料挑战”计划非常契合,因为它探索了一种可扩展的解决方案,用于制造具有独特形态和特性的纳米颗粒(电催化剂)。它有助于解决阻碍这一关键技术工业化的材料发现和开发挑战。该项目与 MCF 计划下与不列颠哥伦比亚大学合作的现有项目相一致,并将利用该计划下开发的能力进行材料性能评估。该项目有可能在材料成分以及方法论的某些方面产生知识产权。
对可再生能源的日益重视导致氢和电池研究的研发工作激增。阳极析氧反应 (OER) 周围的密集电化学环境困扰着催化层、基底和多孔传输层的活性和稳定性,最终影响这两个行业。在此,我们报告了电位循环 (PC) 316L 不锈钢毡多孔传输层 (PTL) 用于阴离子交换膜水电解的好处。如 SEM、EDS、XPS、XRD 和拉曼光谱所示,PC 增加了表面粗糙度并通过铁的氧化产生了 CrFe 5 Ni 2 -O x H y 层。在三电极设置中进行的 PC 后测试显示极化电阻下降了约 68%,这反映在其用作阴离子交换膜水电解器 (AEMWE) 中的阳极时的性能上。总体而言,在阳极条件下对 PTL 进行电位循环在 AEMWE 中测试时可提高性能。可以考虑对不锈钢阳极实施这种处理,以提高 AEMWE 性能。
简介.................... ... ................. ... ....................................................................................................................................................................................................... 4574 风力发电....................................................................................................................................................................................... ... 4575 利用可再生能源生产氢气系统 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4576 利用可再生能源供电及电解器耐久性 . ... ................. ... . . . . . . . . . . . 4578 使用基于可再生能源的电力的水电解器相关问题. . . . . . . . . . . . . 4580 使用可再生能源的碱性水电解器相关问题. . . . . . . . . . . . . . . . 4580 使用可再生能源的 PEM 水电解器相关问题. . . . . . . . . . . . . . . . . . . . . . . . . 4583 利用可再生能源的 SOEC 的动态特性 . . . . . . . . . . . . . . . . . . . . . . . . 4584 结论与展望 . . . . . . . . . . . . . . . . . . . ................. ... . . . . 4588 致谢. ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 4588
项目历史 更薄的膜和替代催化剂有望提高 PEM 电解器的稳定运行和效率。该项目提高了材料性能并将组件集成在一起,同时利用基本特性来理解和突破设计极限。