在本研究中,严格分析了流动电解槽中高速率 CO 2 还原过程中的碳平衡。由于电化学还原和与电极-电解质界面处的 OH - 反应,气体扩散电极上的 CO 2 消耗导致流出电解槽的气体体积流量大幅降低,尤其是在使用高碱性电解质和高电流密度时,这主要是由于阴极/电解质界面处的 pH 值升高。如果不考虑 CO 2 消耗,在高电流密度 CO 2 还原条件下,特别是在高 pH 值电解质的情况下,主要气体产物的法拉第效率可能会被显著高估。此外,通过两步程序阐明了详细的碳平衡路径,即 CO 2 与阴极/电解质界面处的 OH - 反应,然后由于阳极附近 pH 值相对较低而在阳极/电解质界面处生成 CO 2。基于提出的两步碳平衡路径,对阳极电解液中释放的气体进行系统探索,揭示了 HCO 3 - 或 OH - 阴极电解液向 CO 3 2- 阴极电解液的转变,并通过 pH 测量进一步证实了这一点。
Kemiwatt 开发水合有机氧化液流电池基于蒽醌的阳极电解液(专有分子)堆栈设计和组装电解质回收无需重金属安全(无热失控问题)
常用的电解质溶液包括六氟磷酸钠(NaPF6)、高氯酸钠(NaClO4)、六氟砷酸钠(NaAsF6)、四氟硼酸钠(NaBF4)、二氟草酸硼酸钠(NaBOB)等,有机溶剂一般为烷基碳酸酯化合物。13,14电解液同时影响SIBs的电化学性能和安全性,它不仅决定了电池的电化学窗口和能量密度,还控制着电极/电解液界面的性能。15,16电解液复杂的电化学副反应和金属钠枝晶的形成在一定程度上限制了SIBs的发展。目前,对SIBs电解质的研究主要集中在新型电解质盐、溶剂改性及混合、新型添加剂等方面。一系列新型钠盐,如二氟乙酸钠磺酰亚胺钠(NaFSI)、三氟甲基磺酰亚胺钠(NaTFSI)、二氟乙酸钠硼酸盐(NaODFB)等已被证明是潜在的替代品。17 – 19与传统碳酸酯溶剂相比,醚类溶剂可作为SIBs电解质的替代品。20此外,腈类、氟化溶剂、羧酸盐溶剂、离子液体也可作为候选溶剂。特别是新型添加剂由于其优异的成膜性能、高低温稳定性、快速充电能力,近年来成为研究重点。 21,22 在 SIB 中,成膜组分 NaF 在反应过程中相对容易溶解,导致电极界面不稳定。23 通常,不稳定的电解质界面
阿科玛与 Morrow 签署了谅解备忘录,旨在共同开发、筛选和测试用于下一代高压电池的新型电解液配方。基于阿科玛专有的超纯锂电解液盐和 Morrow 基于无钴高压尖晶石 (LNMO) 的大尺寸电池,此次合作将加速新一代电池的开发。Morrow Batteries 的目标是成为世界上第一家将 LNMO 技术作为活性阴极材料商业化的电池公司。得益于其特殊的化学性质,与性能相似的电池相比,LNMO 的成本和碳足迹将显著降低。此外,对在阴极和阳极端子之间输送带正电离子的电解液的优化将能够显著提高新一代电池的性能和竞争力。“我们很高兴能与 Morrow Batteries 合作,它是欧洲电池制造领域最具创新性和雄心勃勃的扩张公司之一。 “我们的合作为其基于 LNMO 的尖端电池技术的商业化铺平了道路,我们很高兴阿科玛能够参与其中”,阿科玛首席技术官 Armand Ajdari 表示。阿科玛最近在法国里昂的 Pierre-Bénite 研究中心开设了专门用于电池的卓越中心,并正在加快在该领域的投资。阿科玛利用世界一流的工业流程专业知识,开发出高纯度 Foranext® 锂盐,有助于显著提高电池的功率、稳定性和寿命。
染料敏化太阳能电池(DSSC)一直是材料与能源领域的研究热点,这主要归功于其制备工艺简单、成本低廉、颜色多样、灵活性强等特点(Bajpai et al.,2011)。典型的DSSC由光阳极、电解液和对电极三部分组成。光阳极接收光子并发射电子到外电路(Hong et al.,2008),电子经过负载后通过对电极被送到电解液中,还原电解液中的I3−(Zhu et al.,2017)。Pt作为贵金属,凭借优异的导电性和催化性能,是目前传统对电极的主流选择(Ghosh et al.,2020),但Pt资源稀缺且价格昂贵,不利于DSSC的大规模生产(Hauch and Georg,2001)。此外,碘基电解液和空气对Pt也有腐蚀作用,缩短电池寿命(Olsen等,2000)。因此,寻找廉价、耐腐蚀的对电极替代材料十分必要(Sun等,2014)。石墨烯作为二维碳材料,因其电导率、多孔结构、比表面积、耐腐蚀等特性,在DSSC研究领域被广泛用作对电极(Kavan等,2011;Battumur等,2012;Liu等,2020a;Liu等,2020b;Liu等,2020c)。 Roy-Mayhew 观察到调整石墨烯中碳氧比例可提高电池效率(Roy-Mayhew et al.,2010)。Choi 等对石墨烯进行高温处理,并将其用于 DSSC 中,以提高效率(Choi et al.,2011)。近年来,将其他性能优异的材料与石墨烯复合成为研究热点(Peng et al.,2011;Wang et al.,2012)。Dou 等将 Ni12P5 粒子与石墨烯复合作为 DSSC 的对电极,获得了 5.7% 的效率,表明电化学性能有所提高(Dou et al.,2011)。Wen 等将 TiN 与氮掺杂的石墨烯复合材料用于提高电催化性能(Wen et al.,2011)。石墨烯与其他材料的复合材料已成为研究的热点(Peng et al.,2011;Wang et al.,2012)。
步骤 2 包装 步骤 3 电解液填充 1 CT 2 CT 3 CT 步骤 1 堆叠/卷绕 步骤 4 化成 步骤 5 脱气 步骤 6 老化 步骤 7 EOL 测试 步骤 8 模块组装
摘要 水系锌离子电池因其高功率密度、本质安全、低成本和环境友好等优点,近年来受到了广泛的关注。然而,其能量密度低、循环寿命短等缺点严重阻碍了其应用,这主要归因于锌枝晶、界面副反应、水分解引起的电位窗口窄等问题,而这些问题都与水系电解液中Zn 2 +的溶剂化结构密切相关。因此,本文全面总结了近年来调控Zn 2 +溶剂化结构的策略的研究进展,特别是锌盐、非水系共溶剂和功能添加剂对Zn 2 +溶剂化结构及其对水系锌离子电池电化学性能的影响。此外,本文还对具有独特溶剂化结构的水系电解液的设计和商业化所面临的挑战和可能的解决方案进行了展望。
电解在 1000 mA/cm 2 电流密度下进行,电解液为 35% KOH,温度为 200~,压力为 30 atm。电解 250 小时后,由于腐蚀产物在阳极内累积,阳极孔隙率从约 45% 降至约 20%。
锂电池有任何特殊的回收要求吗?有任何报废处理计划吗?对环境有影响吗?全球都有锂离子回收基础设施,我们的供应商(符合所有法规)也可以管理。但是,处理由机器所有者负责。无需浇水,锂离子电池组也不会出现电解液“泄漏”,比其他电池更环保。