锂氧(Li-O 2)电池被认为是下一代储能系统的预期继任者。但是,通常使用的有机盐电解质的全面特性仍然不令人满意,更不用说它们的昂贵价格,这严重阻碍了Li-O 2电池的实际生产和应用。在此,我们提出了一个低成本的全有机硝酸盐电解质(lino 3-kno 3-dmso),用于Li-O 2电池。与有机盐电解质相比,无机硝酸盐电解质具有更高的离子电导率和更宽的电化学稳定窗口。K +的存在可以稳定O 2-中间体,从而通过溶液途径扩大能力来促进放电过程。即使在0.01 m的超低浓度下,K +仍然可以保持稳定以促进溶液放电过程,并且还具有通过静电屏蔽抑制树突生长的新功能,从而进一步增强了电池稳定性并有助于长周期寿命。结果,在0.99 m的Lino 3 - 0.01 m KNO 3 -DMSO电解质中,Li-O 2电池表现出延长的循环性能(108个循环)和出色的速率性能(2 A·G-1),比有机盐的含量明显优于有机盐。
遗传学,疫苗和感染性DESEOS研究小组(GENVIP),圣地亚哥卫生研究所(IDIS)(IDIS),西班牙圣地亚哥·德·科斯特拉(Santiago de Compostela)西班牙c研究中心(CSIC),西班牙和生物群岛的De Compostela,在传染病网络(Ciberinfec),马德里,西班牙胆小的儿科和传染病疾病,西班牙疾病,西班牙临床医院,Spantiago deia compostera(Chusa)(CH)(CH)
摘要。考虑使用其他虚拟现实耳机到其他耳机的本机库在Unity游戏引擎中开发的虚拟现实应用程序的自动移植问题。确定了移植过程中产生的问题,并描述了其解决方案的算法。在作者先前针对不同耳机开发的移植vr-applications的工作中,对所提出的解决方案进行了测试。尚未解决的问题被描述,并提出了可伸缩性的可能性。随着VR在教育和行业中使用的增长,移植的任务非常广泛,因此,如果有必要扩大所使用的耳机范围,则提供的解决方案可以实现重大效果。
图2。(a)[lipf 6]/[sl] = 1/4,(b)[liotf]/[liotf]/[sl] = 1/1,(c)[libf 4]/[libf 4]/[sl] = 1/1,(d)[litfsa]/[litfsa]/[sl] = 1/1,(e)[lifsa] [lifsa] = 1/1/1/1/2,(f)[lIDF) [LICLO 4]/[SL] = 1/2溶剂。(a)和(b)的晶体学信息(CIF)文件分别存放在剑桥晶体学数据中心(CCDC)中,分别为CCDC 2292897和CCDC 2292899。(c),(d),(e)和(f)的绘制。(g)从参考文献中报告的CIF文件中重新绘制。12。颜色代码:紫色,李;粉红色,b;灰色,c;蓝色,n;红色,o;浅绿色,f;橙色,P;和黄色的氢原子未显示。
这些高能电池材料(包括高NI NMC和LI金属)被广泛接受为长期射程EV车辆,无人机和航空航天应用所需的下一步更改。随着LI电池市场的增加,对于实现所需性能所需的下一代材料的市场也会增加。现有的公司当前提供电解质,分离器材料和粘合剂的现有公司将从改善细胞性能的材料开发中受益。此外,新玩家也有一个很好的机会进入市场,因为新产品将是必要的,以解决下一代电池的要求,例如更高的温度性能,更高的可持续性和提高的回收能力。本报告总结了电解质系统中的艺术状况,并披露了一些目前需要解决的差距,以提高能量密度,安全性和可持续性。
硫化物电解质通常具有高离子电导率(> 1 ms/cm)LI6 PS 5 Cl(LPSCL; LPSC)是研究最多的硫化物电解质,并且大量可用(〜$ 10/g)
图1:Nafion N117(A,C)的电导率(A,B)和电解质质量分数(C,D)和烟雾E-620(B,D)在NaOH或KOH电解质中浸泡在Select浓度(MOH IN MOH代表Na或K)处的膜。在表S2和S3中将相应的数据表列出。
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
电解质溶剂蒸汽检测解决方案是根据 BESS 的特定特性设计的,包括几何形状、体积、电池类型、空间布局和气流模式。即使单个电池开始排出电解质蒸汽,分布式气体传感器网络也会立即检测到。通过这种方式,BESS 操作员可以最早收到故障指示,并可以进行干预以防止热失控。由于检测器的监视器通过火灾报警控制面板连接到 BMS,它可以自动指示系统立即隔离受影响的电池架,从而遏制火灾威胁。监视器还可以与 BMS 通信,以自动启动通风、增加冷却或触发灭火。由于 BESS 站点通常无人值守且位于偏远地区,这种自动响应可以为 BESS 操作员争取关键的干预时间。