绿色氢可以预见到减少重型运输的CO 2排放以及难以减少诸如铁和钢制造的行业的重要角色,欧盟希望到2030年脱碳30%。本研究提出了碱性水电解体的性能和降解模型,以评估电解器对不同功率输入曲线的响应,并确定最有效和最具成本效益的操作策略。为此,评估了三种情况,其中一个场景根据太阳能和风的100%供应提供了电源,一个场景从网格中具有恒定的电源,一个方案的电源为电源,电源量在Electrolyser的标称载荷的66%至100%之间波动。可以证明,后一种情况可以达到十年来最高的平均效率,而持续电源的情况达到了最低的降解。最低的电力成本是通过太阳能和风能的100%电源达到的。与文献中的其他模型相比,本研究中的模型具有带有流动电解质的扩展热模型以及文献中最早描述的第一个电解器降解模型之一。被认为对工业碱性电解质的建模提供了重要贡献。
基于氧化物固体电解质的全固态电池 (ASSB) 是未来高能量密度、更安全的电池的有希望的候选者。为了估算氧化物基 ASSB 的未来制造成本,对固体氧化物燃料电池 (SOFC) 和多层陶瓷电容器 (MLCC) 生产技术进行了系统的识别和评估。基于需求分析,评估了这些技术在 ASSB 生产中的适用性。使用蒙特卡罗模拟对最有前途的技术进行技术准备情况比较。对氧化物基 ASSB 生产场景的全面概述和系统分析揭示了成熟的湿涂层技术(例如流延和丝网印刷)的显著优势。然而,气溶胶沉积法等新兴技术可能会使高温烧结步骤无效。通过与 SOFC 生产进行比较并采用传统电池生产的学习率,对石榴石基 ASSB 的制造成本进行了估算,表明如果石榴石固体电解质的材料成本可以降低到 60 美元/千克以下,那么电池级(包括外壳)的价格可以低于 150 美元/千瓦时。基于这些发现,可以得出从实验室研究到工业规模的扩大方案,为大规模生产高能量密度的更安全电池铺平道路。
可充电锂离子电池在一系列应用中至关重要,包括便携式电子,电动汽车和网格尺度储能。这样的电池取决于锂离子在阳极和阴极之间通过液体电解质的运动。下一代可充电电池的一种有希望的策略是使用固体电解质和由锂金属制成的阳极 - 这些细胞被称为锂金属固态电池。然而,这些设备容易出现故障机制,在该机制中,锂(称为树突)在电池运行过程中形成并刺穿电解质。第287页,Ning等。 1个对这种机制的启示,揭示了可能使实际上有用的锂金属固态电池更接近现实的细节。 锂离子电池具有许多潜在的用途,因为它们是模块化,便携式和可靠的。 它们还受益于长寿命,高能量密度(需要在需要充电之前延长使用)和高功率密度(与充电时间短)。 尽管如此,仍然有不断的推动来提高这些电池的安全性,能量密度和功率密度。 在常规锂离子电池中,液体电解质易燃,可以驱动不需要的侧面反应,从而限制电池的寿命。 使用固态电解质的固态电池正在由学术,工业和政府研究人员2进行研究,部分原因是声称这样的电池比传统的同行3。第287页,Ning等。1个对这种机制的启示,揭示了可能使实际上有用的锂金属固态电池更接近现实的细节。锂离子电池具有许多潜在的用途,因为它们是模块化,便携式和可靠的。它们还受益于长寿命,高能量密度(需要在需要充电之前延长使用)和高功率密度(与充电时间短)。尽管如此,仍然有不断的推动来提高这些电池的安全性,能量密度和功率密度。在常规锂离子电池中,液体电解质易燃,可以驱动不需要的侧面反应,从而限制电池的寿命。使用固态电解质的固态电池正在由学术,工业和政府研究人员2进行研究,部分原因是声称这样的电池比传统的同行3。具有“双极堆叠”配置和能量密度阳极的固态电池也可能会显着改善能量密度和功率密度2。
锌 - 碘流量电池(ZIFB)在过去几年中正在研究,因为它是作为未来电化学能源存储的潜在候选人的适用性。在骑自行车期间,影响ZIFB可靠性的最大挑战之一是通过膜的大量水迁移,因为驱虫剂和天主解中的摩尔浓度差异,这会使每个隔间中的渗透压失衡。考虑到质量平衡,我们建议通过将额外的溶质添加到下离子浓度的隔室中,以使电解质的总离子浓度均衡,以限制水交叉。通过评估循环后电解质和半细胞电荷电解质的实验验证,对该电解质浓度平衡策略进行了平衡策略,这证实了有效抑制从天主教徒到Anolyte的水迁移的有效抑制。此外,通过Nafion 117对离子和水传输机理进行深入分析,证实与溶剂化的Zn 2 +离子相比,离子半径的溶剂化的K +离子是主要的迁移载体。因此,添加额外的Ki溶质有益于抑制大型水合Zn 2 +离子的主要运输以及较高的水。最后,在与平衡摩尔浓度的电解质组装的细胞中提高的电导率,放电能力和电压效率提高的改进的ZIFB细胞行为结论是我们目前的研究结论,证明了将电解质浓度调整为抑制水作为一种有吸引力的方法的有效方法。
湿度也是决定金属腐蚀速率的主要因素,因为水分提供了腐蚀反应所需的电解质。一般来说,腐蚀速率随着湿度的增加而增加。在没有其他电解质的情况下,发生严重腐蚀的临界相对湿度通常为 60%。3 此临界相对湿度可能因大气中存在的杂质而异。降雨可以增加或减少腐蚀过程。在可能积聚死水的区域,最有可能形成局部腐蚀电池。但是,雨水也可能将腐蚀性沉积物从金属表面冲走,从而降低腐蚀性。
该实验室的电池循环器用于连续充电和放电原型电池,这些电池最终可用于为电动汽车供电或支持电网等应用。该系统测量实验室使用纳米级复合材料的电极和电解质的寿命。虽然一些测试在几个小时内完成,但其他专注于长期性能的测试可能需要几个月的时间。优化电化学储能,尤其是电池中的电化学储能,是摆脱以化石燃料为基础的经济转型的关键组成部分。
表 1.4. 通过不同的测量方法,得到不同电极和电解质的 Ce 3+ /Ce 4+ 电荷转移动力学参数。报告的动力学参数包括标准速率常数 𝑘 0 、交换电流密度 𝑖 0 、还原峰和氧化峰之间的分裂 𝛥𝐸 𝑝 以及阳极和阴极电荷转移系数 𝛼 𝑎 和 𝛼 𝑐 。在正文中,我们报告电荷转移系数时指的是阴极电荷转移。 ................ 27
摘要:有机电化学晶体管(OECTS)是具有高跨导率的晶体管的产生,其中半导体通道的整体体积参与电化学掺杂过程。但是,液体电解质的使用限制了OECT的应用,并且由于电解质中的水存在,掺杂过程也很复杂。在这项研究中,首次将基于热塑性聚氨酯(TPU)的固体电解质在OECT中使用。将三种类型的离子液体与TPU聚合物基质作为固体电解质混合,并根据三种P型共轭半导体对OECT进行了研究。进一步进行了原位光谱化学研究,以确认基于TPU的固体电解质的这些共轭半导体的掺杂/发射过程。通过连续施加的偏置,在环境条件下的长时间操作和变化的温度(-50至120°C),证明了制造的固态OECT(SSOECT)的鲁棒性和高稳定性。在1000个弯曲周期后,在聚对苯二甲酸酯(PET)底物上也获得了高度柔韧性SSOECT,该苯二甲酸酯(PET)底物显示出可忽略不计的波动(I ON / I OFF)。基于这些高性能的SSOECT,在单极和互补构型中制造了逆变器电路,其中N型和基于P型OECT的互补逆变器与单极设计相比显示出更高的增益(46)。关键字:有机电化学晶体管,固体电解质,离子液体,互补逆变器,柔性电子
要研究2D材料,一种共同的途径是在固体基板的表面上支撑它们。在这种情况下,如果要按需插入离子,即通过某种控制机制,则必须与电解质接触。相对于计数器电极,给定的2D材料中给定的离子物种的化学潜力差异为离子插入的驱动力提供了可以控制的驱动力。尽管底物本身可以用作固态电解质,例如在离子导电玻璃陶瓷的情况下,[10-12]在受支持的2D材料的层之间插入离子插入可能会受到阻碍,因为通常有效地插入了通常通过边缘或缺陷站点进行有效插入。在从顶部施加电解质时,覆盖它们的可能性更大 - 近年来,这种方法主要用于静电门控。[13,14]为了以系统的方式插入和运输的目的解决,重要的是以图案化的方式将电解质与2D材料集成在一起,例如在离子扩散过程上强加方向性。这主要是样本量和模式分辨率问题,可以通过100 µm及以后的规模来解决,例如,通过固态电解质的添加剂制造[15]或通过对液体的喷墨打印。[16–18]这些方法的当前局限性是通过打印分辨率以及通过电解质的机械性能来设置的。这些往往很容易弄湿样品表面的大部分,必须因此,粘性电解质或离子 - 凝胶更直接地打印[16],而一系列低粘度电池级电解质(例如碳酸乙酯/碳酸乙酯中的LIPF 6)不是。
1。引言由于锂离子电池的能量密度比其他二级电池更高,因此可以使其更小,更轻。这使他们能够迅速传播为移动设备(例如笔记本电脑和蜂窝电话)的电源。对锂离子电池的需求不断地不断增长,近年来,使用二级电池的车辆电力已成为实现低碳社会的全球趋势。此外,由于使用有机溶剂作为电解质的常规液态细胞是可亮的,因此在日本和世界其他地区,正在积极追求使用固体电解质的安全,全稳态细胞的发展。在这种情况下,许多人期望锂离子电池的性能进一步改善,并更长的寿命和更好的安全性。X射线衍射(XRD)被认为是评估锂离子电池改善性能所需的有效分析技术之一。要检查合成电池材料的结晶和相位ID分析,经常使用容易用于研究的实验室尺度X射线衍射仪。另一方面,在充电和放电过程中,在高强度X射线可用的同步基因设备上经常进行Operando(或原位)测量正和负电极材料晶体结构的变化(1) - (3)。最近,由于X射线源,光学元素和检测器的性能提高,即使实验室尺度X射线衍射仪,Operando的测量也已成为可能。本文介绍了使用SmartLab表征锂离子电池材料的示例。