引言对储能解决方案的越来越多的需求刺激了对高性能,持久和低成本电池的需求,并且固态电池(ASSB)作为锂离子电池的有前途的替代品,由于其安全性和高能密度的潜力[1]。ASSB通过锂离子在阳极和阴极之间通过固体电解质的运动运行,通过消除与液体电解质相关的泄漏和挥发性风险来增强安全性和能量密度[2]。该项目的研究重点是通过了解细胞内的降解机制和机械应力来提高性能,利用多物理学模型和压力分析来优化其寿命,效率和安全性。
锌金属电池 (ZnBs) 因其在水性电解质中的可操作性、Zn 含量丰富和可回收性而安全且可持续。然而,Zn 金属在水性电解质中的热力学不稳定性是其商业化的主要瓶颈。因此,Zn 沉积 (Zn 2 + → Zn(s)) 不断伴随着氢析出反应 (HER) (2H + → H 2 ) 和树枝状生长,进一步加剧了 HER。因此,Zn 电极周围的局部 pH 值增加并促进 Zn 上形成不活跃和/或导电性差的 Zn 钝化物质 (Zn + 2H 2 O → Zn(OH) 2 + H 2 )。这加剧了 Zn 和电解质的消耗并降低了 ZnB 的性能。为了推动 HER 超越其热力学电位(pH 0 时 0 V vs 标准氢电极 (SHE)),水包盐电解质 (WISE) 的概念已用于 ZnBs。自 2016 年发表第一篇关于 ZnB WISE 的文章以来,这一研究领域不断取得进展。本文概述并讨论了这一有希望加速 ZnBs 成熟的研究方向。本综述简要介绍了 ZnBs 中传统水性电解质的当前问题,包括 WISE 的历史概述和基本理解。此外,还详细介绍了 WISE 在 ZnBs 中的应用场景,并描述了各种关键机制(例如副反应、Zn 电沉积、金属氧化物或石墨中的阴离子或阳离子插入以及低温下的离子传输)。
常用的电解质溶液包括六氟磷酸钠(NaPF6)、高氯酸钠(NaClO4)、六氟砷酸钠(NaAsF6)、四氟硼酸钠(NaBF4)、二氟草酸硼酸钠(NaBOB)等,有机溶剂一般为烷基碳酸酯化合物。13,14电解液同时影响SIBs的电化学性能和安全性,它不仅决定了电池的电化学窗口和能量密度,还控制着电极/电解液界面的性能。15,16电解液复杂的电化学副反应和金属钠枝晶的形成在一定程度上限制了SIBs的发展。目前,对SIBs电解质的研究主要集中在新型电解质盐、溶剂改性及混合、新型添加剂等方面。一系列新型钠盐,如二氟乙酸钠磺酰亚胺钠(NaFSI)、三氟甲基磺酰亚胺钠(NaTFSI)、二氟乙酸钠硼酸盐(NaODFB)等已被证明是潜在的替代品。17 – 19与传统碳酸酯溶剂相比,醚类溶剂可作为SIBs电解质的替代品。20此外,腈类、氟化溶剂、羧酸盐溶剂、离子液体也可作为候选溶剂。特别是新型添加剂由于其优异的成膜性能、高低温稳定性、快速充电能力,近年来成为研究重点。 21,22 在 SIB 中,成膜组分 NaF 在反应过程中相对容易溶解,导致电极界面不稳定。23 通常,不稳定的电解质界面
Sheldon; Akinwande,Deji;贝里,维卡斯; Nayak,Ganesh Chandra;在高电荷迁移率离子电解质的非对称超级电容器的氮化硼纳米框架中,诱导的导电水平 - 复合材料B:工程学,212,108728,2021。Sheldon; Akinwande,Deji;贝里,维卡斯; Nayak,Ganesh Chandra;在高电荷迁移率离子电解质的非对称超级电容器的氮化硼纳米框架中,诱导的导电水平 - 复合材料B:工程学,212,108728,2021。Q119。 Alamgir,医学博士; Mallick,Ashis; Nayak,GC; Phema和Phema纳米复合材料靶向牙科材料的机械和热行为,应用纳米科学,11、4、1257-1265,2021,Q2 20。 de,Shrabani; Maity,Chandan Kumar; Sahoo,Sumanta; Nayak,Ganesh Chandra; polyindoleQ119。Alamgir,医学博士; Mallick,Ashis; Nayak,GC; Phema和Phema纳米复合材料靶向牙科材料的机械和热行为,应用纳米科学,11、4、1257-1265,2021,Q2 20。Alamgir,医学博士; Mallick,Ashis; Nayak,GC; Phema和Phema纳米复合材料靶向牙科材料的机械和热行为,应用纳米科学,11、4、1257-1265,2021,Q2 20。de,Shrabani; Maity,Chandan Kumar; Sahoo,Sumanta; Nayak,Ganesh Chandra; polyindole
基于硫的陶瓷固态电解质由于其高离子电导率而引起了极大的兴趣。[5]中,据报道,陶瓷硫化物固体电解质的结合率为12-25 ms cm –1,与传统液体电解质相似甚至更高。不幸的是,陶瓷 - 硫化物固体电解质的固有电压窗口狭窄(1.7-2.1 V)。[6]尽管如此,以前的工作报告说,LI 10 GEP 2 S 12(LGP)或LI 9.54 SI 1.74 P 1.44 S 11.7 Cl 0.3(LSPS-CL)的电池可以循环至5 V,并具有最小的降解。[7,8]这些看似发生的结果仍然是固体电解质领域面临的最紧迫的问题之一。试图解释这一点的重点是界面接触或阴极涂层,[9]电子绝缘,[10,11]和电解质的锂化/划定。[12–14]但是,它仍然缺乏对该领域文献中发现的不同结果的定量解释。许多研究都将固态电池的电化学性能(尤其是离子电导率)与堆叠压力相关联,并获得了对系统的新理解。[15–20]先前,我们表明,以核心壳形态的形式机械约束可以在LGP和LSP的扩展电压范围内诱导亚稳定性。[8,21–23]在这项工作中,我们利用细胞级的机械结构来更好地理解LGPS衰变的性质,从而充电至全细胞体系结构中的高压。结果显示了在这些电化学过程中LGP扭曲的直接证据。Through this approach, we identify, for the first time, that not only can mechanical constriction lead to thermodynamic metastability in an expanded window, but that it can also lead to kinetic stability up to the tool testing limit of 9.8 V. Synchrotron X-ray diffraction (XRD) and X-ray absorption spectroscopy (XAS) are used to measure the structural changes of LGPS before and after high-voltage holds.除了(De)岩性引起的LGPS张力外,XRD峰的(DE)较高,[12,14,24]菌株扩展表明,存在高度紧张的区域的小局部域。LGPS颗粒内部的这些紧张的小口袋是固体 - 电元素内分解夹杂物的证据,这是第一次提供直接的实验证据,以预测成核衰减形态的先验预测。[21]通过比较密度功能理论
追求高安全性和高能密度固态电池已成为能源研究的重要点,从而影响了学术界和工业。但是,由于固体电解质(SSE)和电极之间的界面不稳定性,固态电池的实践实现遇到了挑战。一种有希望的解决方案在于基于卤素化学的新SSE家族,以其令人印象深刻的特征而闻名,例如高离子电导率和高压稳定性[1,2]。值得注意的是,利用氯化物SSE的固态细胞具有特殊的循环性能[3,4]。此外,基于LACL 3的电解质的最新工作表明,该氯化物SSE将具有与锂金属阳极的良好兼容性[5]。最近,一类固体电解质(称为氧化氯化物固体电解质)与氯化物相似。然而,基于氯化物的基于氯化物和氧气的细胞仍需要高堆栈压力,通常从几到数百兆帕群,以维持与电极的密切接触。这构成了一个显着的挑战,因为电池组对细胞堆栈压力施加了严格的上限,并且达到理想的压力(低于0.1 MPa)对于固态电池电池的成功设计至关重要[6]。最近,HU和同事在自然能源中提出了一种突破性的解决方案[7]。他们引入了一种创新方法,涉及发现粘弹性无机玻璃(Viglas)氧化氯化物电解质。1 a)。1 B,C)。1 B,C)。通过巧妙地取代氧原子在锂和四氯铝钠内的氯原子(liaLcl 4和NaAlcl 4)中,它们通常将通常易碎的熔融盐转移到粘弹性玻璃类似物中,特异性地,lialcl 2.5 o 0.75 o 0.75(laco)和naalcl 2.5 o.55(naalcl 2.5 o)。这些对应物显示出令人印象深刻的变形水平,类似于有机聚合物电解质,即使在室温下也可以弯曲并折叠[7](如图这是一个重要的里程碑,因为它将有机聚合物电解质的理想特征与调用无机电解质的强度合并。这些强度包括对高压(最多4.3 V)和高离子电导率(超过1 ms/cm)的抗性,如图这些属性有效地应对电极和电解质之间界面上的机械和化学稳定性相关的挑战。结果,功能齐全的LI/LLZTO/LACO75-NCM622和Na/nasicon/
摘要 全固态电池是有前途的高能量密度存储设备。为了在不进行昂贵的反复试验的情况下优化其性能,提出了微观结构解析连续模型来了解电极结构对其性能的影响。我们讨论了固态电池微观结构解析建模的最新进展。虽然并非所有实验观察到的现象都能准确表示,但这些模型普遍认为固体电解质的低离子电导率是一个限制因素。最后,我们强调需要微观结构解析的降解机制模型、制造效应和人工智能方法,以加快全固态电池电极界面的优化。
摘要:研究粘稠的甘醇二甲醚溶剂可能有助于寻找安全的电解液以促进锂硫 (Li-S) 电池的应用。因此,本文对使用不易燃的四乙二醇二甲醚添加低粘度 1,3-二氧戊环 (DOL) 的电解液进行了彻底研究,以实现可持续的 Li-S 电池。该电解质的特点是低可燃性、约 200°C 的热稳定性、25°C 时离子电导率超过 10 − 3 S cm − 1、Li + 迁移数约为 0.5、电化学稳定窗口从 0 至约 4.4 V vs Li + /Li,Li 剥离沉积过电位为 ∼ 0.02 V。DOL 含量从 5 wt % 逐渐增加到 15 wt % 会提高 Li + 运动的活化能,降低迁移数,稍微限制阳极稳定性,并降低 Li/电解质电阻。该电解质用于 Li − S 电池,其复合材料由硫和多壁碳纳米管以 90:10 的重量比混合而成,利用了优化的集流体。对阴极的结构、热行为和形貌进行了初步研究,并在使用标准电解质的电池中使用。该电池可进行超过 200 次循环,硫负载增加至 5.2 mg cm − 2,电解质/硫 (E/S) 比降低至 6 μ L mg − 1 。随后将上述硫阴极和基于甘醇二甲醚的电解质组合成安全的 Li − S 电池,其循环寿命和输出容量与研究浓度范围内的 DOL 含量相关。关键词:Li − S 电池、甘醇二甲醚电解质、低可燃性、MWCNT、集电器、E/S 比
项目描述 锂离子电池在我们的生活中非常重要,但由于使用高度易燃的有机电解质,可能带来严重的安全隐患——电池起火和爆炸的新闻似乎经常出现。用水基系统替代有机电解质是一种有吸引力的解决方案,它可以提高电池安全性,同时降低成本和环境影响。然而,目前采用水性电解质的锂离子电池能量密度低,循环寿命短。通常缺乏对其根本原因的详细机制理解,因为迄今为止的大多数研究都集中在完善的有机电解质上。例如,很少关注锂离子电池电极材料(通常用于无质子环境)与水性电解质中的水的相互作用。
可持续,材料必须丰富、廉价且无毒。然而,毒性并不是唯一的安全隐患。媒体经常报道因锂离子电池易燃而发生的事故。这些设备的易燃性通常与非水电解质有关。电解质也导致了毒性和高成本,部分原因是使用了氟化盐。[2–5] 解决这些缺陷对于钠离子电池尤为重要,因为可持续性和安全性至关重要。幸运的是,人们正在努力解决电池中使用的电解质的易燃性。减轻可燃性的一种常用策略是使用有机磷化合物作为电解质溶剂。[6–12] 有机磷化合物是一类常见的阻燃剂,用于各种应用。[13] 然而,其中一些化合物对环境和健康有负面影响。[14,15]
