金泽大学自然科学与技术研究生院,日本金泽 920-1192 (tfuruyama@se.kanazawa-u.ac.jp) 酞菁 (Pcs) 和相关大环化合物 (azaporphyrinoids) 是现代材料化学中众所周知的人工染料。迄今为止,已提出了几种对其光学/电化学/芳香性质进行微调的策略。有机合成提供了各种各样的有机分子。Pcs 的多样性提供了新颖的功能,这是创新科学的源泉。我们小组专注于 Pcs 的化学合成,包括“生产新型 Pcs 的受控反应”和“使用 Pcs 的受控反应”。本讲座将讨论 Pc 化学中受控反应的最新成果。五价磷 (P(V)) 的高电负性和高价态有望改变 Pcs 的光谱性质。我们开辟了一种合成策略来制备 (aza) 卟啉 P(V) 复合物。这些配合物由于与外围取代基的结合而具有独特的物理性质 [1]。最近,Si(IV) Pcs 与其轴向配体之间的协同效应也被发现。吸收近红外 (NIR) 的亲水性 Si(IV) Pcs 在近红外光照射 (810 nm) 下表现出高效的光动力学活性 [2]。Pcs 的化学选择性合成是一个重要的课题,但尚未引起太多关注。我们提出了一种新颖的 Pb 介导合成方法,通过该方法合成了带有吸电子基团的 Pcs 材料。这些材料可产生高水平的单线态氧并表现出高光稳定性 [3–4]。在研究 Pc 衍生物的过程中,我们成功合成了一种新型球形金属配合物,它可以吸收近红外区域的光。各种 Pc 前体都用于合成对称和低对称性配合物。结论是,谱带位置和氧化还原电位可以独立调节 [5–6]。Pcs 的精细可调性使得开发一种利用远红光到近红外光的新转化方法成为可能。我们开发了几种用于有机分子转化的近红外催化剂。这些反应进一步表现出对蓝光到绿光吸收功能材料的化学选择性,即使在屏蔽条件下也具有高反应活性 [7–8]。总之,我们小组进行了广泛的基于 Pc 的研究,包括开发 Pcs 生产的合成方法及其受控反应。这些成就为近红外光的灵活应用创造了更多机会。
-) 是一种可溶性阴离子,自然界中浓度较低,但作为固体弹药中广泛使用的氧化剂,由于 1997 年之前对该化合物的处置不受管制,它已成为全美地下水的重要污染物。高氯酸盐是甲状腺碘吸收的竞争性抑制剂,摄入高氯酸盐会导致甲状腺激素分泌减少,这对胎儿和新生儿的正常发育尤其令人担忧。最近的报告记录了乳制品和人类母乳中的高氯酸盐,表明其已上升到食物链的顶端。目前对这种化合物的修复通常涉及离子交换技术,虽然这种方法很有效,但只是将处理过的水中的高氯酸盐浓缩到盐水溶液中。相反,许多微生物能够呼吸高氯酸盐,将其转化为无害的氯化物。因此,生物修复被认为是去除和降解污染物的最有效方法,并且已经开发出许多策略来利用这些异化高氯酸盐还原菌 (DPRB)。传统的生物修复策略是基于使用廉价且容易获得的有机电子供体(如乙醇和醋酸盐)刺激 DPRB。虽然这些化合物可以有效地刺激高氯酸盐还原,但它们也会刺激微生物的大量生长,包括 DPRB 和非目标生物。生物的过度生长会导致生物污垢,这会导致处理失败,并刺激不必要的代谢,如铁和硫酸盐还原,从而产生有毒和恶臭的化合物。此外,添加不稳定的有机物会对生物修复方案产生较差的反馈控制,在饮用水处理的情况下,可能会导致下游消毒副产物 (DBP)。为了解决这些问题,研究了一种用于刺激 DPRB 的电化学系统。已经开发了各种电化学系统来刺激微生物代谢(第 1 章),但没有一种应用于高氯酸盐还原。该系统之所以具有吸引力,是因为它能够为微生物提供还原当量,用于还原高氯酸盐,而无需添加会刺激生长的碳。此外,改变可用电位和电流的能力提供了更严格的反馈控制和高氯酸盐的热力学靶向的可能性,但不会提供更多的电负性电子受体。研究了利用阴极电极作为高氯酸盐还原电子供体的实验(第 2 章)。在生物电反应器 (BER) 的阴极室中,利用蒽醌-2,6-二磺酸盐 (AQDS) 作为电子穿梭机对先前分离的 DPRB 的纯培养物进行测试。这些实验作为概念验证,并证明微生物可以成功地以这种方式还原高氯酸盐。然而,由于这些纯培养物在生长条件下无法在 BER 中存活,因此在阴极室中进行富集以分离能够长期发挥作用的微生物。从这种富集物中分离出两种新的 DPRB,并且
(32)紧密结合理论认为价电子更紧密地保持原子,但在整个固体中被视价轨道重叠进行了离域。该模型适用于SI和GE等半导体,ALP和NACL等绝缘体和盐,以及𝑑金属及其化合物。实际上,紧密结合理论与分子轨道(MO)理论具有显着相似之处。电子结构的任何计算都需要选择原子轨道(AO)基集,该集通常是最小的基础集,仅包含价原子轨道。对这些AOS中的每一个都分配了价值轨道能,可以从原子光谱或Hartree-fock计算中进行经验确定,如下所示。10这些能量反映了原子电负性的趋势。然后,构建了这些AOS的对称适应性线性组合(SALC)。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。 使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。 在MO理论中,𝐻具有等于分子中基本AO的数量。 在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。 求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。在MO理论中,salcs利用分子点群的不可约表示。对于紧密结合理论,使用空间群的晶格翻译亚组的不可约表示构建相应的salcs。使用这些salcs,构建了有限的Hermitian Hamiltonian Matrix(𝐻)。在MO理论中,𝐻具有等于分子中基本AO的数量。在紧密结合理论中,为适当选择的波形构建,其尺寸等于一个单位细胞中的基础AOS数量。求解特征值(电子能)和本征函数(AO系数)的世俗决定因素产率。这些数值结果然后用于生成相关信息和图表。对于MO理论,输出包括MO能量图,确定最高占用和最低的无置置的MOS,即HOMO和LUMO,以及使用AO系数进行电子密度分布和键合分析的人群分析。紧密结合计算的结果产生了状态图的电子密度,这是电子能级的准连续分布,可以分解为来自各种轨道或原子成分的态密度,以及相应的FERMI水平,这是Homo的固态类似物的固态类似物。种群分析也可以进行,并提供用于识别重要键合特征的晶体轨道重叠种群(COOP)或汉密尔顿人群(COHP)图。最后,带结构图或能量分散曲线,这些曲线是沿波向量空间中特定方向的波形绘制的能量。